997 resultados para drug potency
Resumo:
Emerging data on cancer suggesting that target-based therapy is promising strategy in cancer treatment. PI3K-AKT pathway is extensively studied in many cancers; several inhibitors target this pathway in different levels. Recent finding on this pathway uncovered the therapeutic applications of PI3K-specific inhibitors; PI3K, AKT, and mTORC broad spectrum inhibitors. Noticeably, class I PI3K isoforms, p110 and p110 catalytic subunits have rational therapeutic application than other isoforms. Therefore, three classes of inhibitors: isoform-specific, dual-specific and broad spectrum were selected for molecular docking and dynamics. First, p110 structure was modelled; active site was analyzed. Then, molecular docking of each class of inhibitors were studied; the docked complexes were further used in 1.2ns molecular dynamics simulation to report the potency of each class of inhibitor. Remarkably, both the studies retained the similar kind of protein ligand interactions. GDC-0941, XL-147 (broad spectrum); TG100-115 (dual-specific); and AS-252424, PIK-294 (isoform-specific) were found to be potential inhibitors of p110 and p110, respectively. In addition to that pharmacokinetic properties are within recommended ranges. Finally, molecular phylogeny revealed that p110 and p110 are evolutionarily divergent; they probably need separate strategies for drug development.
Resumo:
Death Receptor 5 (DR5) is a pro-apoptotic cell-surface receptor that is a potential therapeutic target in cancer. Despite the potency of DR5-targeting agents in preclinical models, the translation of these effects into the clinic remains disappointing. Herein, we report an alternative approach to exploiting DR5 tumor expression using antibody-targeted, chemotherapy-loaded nanoparticles. We describe the development of an optimized polymer-based nanotherapeutic incorporating both a functionalized polyethylene glycol (PEG) layer and targeting antibodies to limit premature phagocytic clearance whilst enabling targeting of DR5-expressing tumor cells. Using the HCT116 colorectal cancer model, we show that following binding to DR5, the nanoparticles activate caspase 8, enhancing the anti-tumor activity of the camptothecin payload both in vitro and in vivo. Importantly, the combination of nanoparticle-induced DR5 clustering with camptothecin delivery overcomes resistance to DR5-induced apoptosis caused by loss of BAX or overexpression of anti-apoptotic FLIP. This novel approach may improve the clinical activity of DR5-targeted therapeutics while increasing tumor-specific delivery of systemically toxic chemotherapeutics.Molecular Therapy (2014); doi:10.1038/mt.2014.137.
Resumo:
Tese de doutoramento, Farmácia (Química Farmacêutica e Terapêutica), Universidade de Lisboa, Faculdade de Farmácia, 2016
Resumo:
Cette thèse traite de la résistance du VIH-1 aux antirétroviraux, en particulier de l'activité antivirale de plusieurs inhibiteurs non nucléosidiques de la transcriptase inverse (INNTI) ainsi que des inhibiteurs de protéase (IP). Nous avons exploré l’émergence et la spécificité des voies de mutations qui confèrent la résistance contre plusieurs nouveaux INNTI (étravirine (ETR) et rilpivirine (RPV)) (chapitres 2 et 3). En outre, le profil de résistance et le potentiel antirétroviral d'un nouvel IP, PL-100, est présenté dans les chapitres 4 et 5. Pour le premier projet, nous avons utilisé des sous-types B et non-B du VIH-1 pour sélectionner des virus résistants à ETR, et ainsi montré que ETR favorise l’émergence des mutations V90I, K101Q, E138K, V179D/E/F, Y181C, V189I, G190E, H221H/Y et M230L, et ce, en 18 semaines. Fait intéressant, E138K a été la première mutation à émerger dans la plupart des cas. Les clones viraux contenant E138K ont montré un faible niveau de résistance phénotypique à ETR (3,8 fois) et une diminution modeste de la capacité de réplication (2 fois) par rapport au virus de type sauvage. Nous avons également examiné les profils de résistance à ETR et RPV dans les virus contenant des mutations de résistance aux INNTI au début de la sélection. Dans le cas du virus de type sauvage et du virus contenant la mutation unique K103N, les premières mutations à apparaître en présence d’ETR ou de RPV ont été E138K ou E138G suivies d’autres mutations de résistance aux INNTI. À l’inverse, dans les mêmes conditions, le virus avec la mutation Y181C a évolué pour produire les mutations V179I/F ou A62V/A, mais pas E138K/G. L'ajout de mutations à la position 138 en présence de Y181C n'augmente pas les niveaux de résistance à ETR ou RPV. Nous avons également observé que la combinaison de Y181C et E138K peut conduire à un virus moins adapté par rapport au virus contenant uniquement Y181C. Sur la base de ces résultats, nous suggérons que les mutations Y181C et E138K peuvent être antagonistes. L’analyse de la résistance au PL-100 des virus de sous-type C et CRF01_AE dans les cellules en culture est décrite dans le chapitre 4. Le PL-100 sélectionne pour des mutations de résistance utilisant deux voies distinctes, l'une avec les mutations V82A et L90M et l'autre avec T80I, suivi de l’addition des mutations M46I/L, I54M, K55R, L76F, P81S et I85V. Une accumulation d'au moins trois mutations dans le rabat protéique et dans le site actif est requise dans chaque cas pour qu’un haut niveau de résistance soit atteint, ce qui démontre que le PL-100 dispose d'une barrière génétique élevée contre le développement de la résistance. Dans le chapitre 5, nous avons évalué le potentiel du PL-100 en tant qu’inhibiteur de protéase de deuxième génération. Les virus résistants au PL-100 émergent en 8-48 semaines alors qu’aucune mutation n’apparaît avec le darunavir (DRV) sur une période de 40 semaines. La modélisation moléculaire montre que la haute barrière génétique du DRV est due à de multiples interactions avec la protéase dont des liaison hydrogènes entre les groupes di-tétrahydrofuranne (THF) et les atomes d'oxygène des acides aminés A28, D29 et D30, tandis que la liaison de PL-100 est principalement basée sur des interactions polaires et hydrophobes délocalisées à travers ses groupes diphényle. Nos données suggèrent que les contacts de liaison hydrogène et le groupe di-THF dans le DRV, ainsi que le caractère hydrophobe du PL-100, contribuent à la liaison à la protéase ainsi qu’à la haute barrière génétique contre la résistance et que la refonte de la structure de PL-100 pour inclure un groupe di-THF pourrait améliorer l’activité antivirale et le profil de résistance.
Resumo:
Objective: Our research program has focused on the development of promising, soft alkylating N-phenyl-N’-(2-chloroethyl)urea (CEU) compounds which acylate the glutamic acid-198 of β-tubulin, near the binding site of colchicum alkaloids. CEUs inhibit the motility of cancerous cells in vitro and, interestingly, exhibit antiangiogenic and anticancer activity in vivo. Mitotic arrest induced by microtubule-interfering agents such as CEUs remains the major mechanism of their anticancer activity, leading to apoptosis. However, we recently demonstrated that microtubule disruption by CEUs and other common antimicrotubule agents greatly alters the integrity and organization of microtubule-associated structures, the focal adhesion contact, thereby initiating anoikis, an apoptosis-like cell death mechanism caused by the loss of cell contact with the extracellular matrix. Methods: To ascertain the activated signaling pathway profile of CEUs, flow cytometry, Western blot, immunohistochemistry and transfection experiments were performed. Wound-healing and chick embryo assays were carried out to evaluate the antiangiogenic potency of CEUs. Results: CEU-induced apoptosis involved early cell cycle arrest in G2/M and increased level of CDK1/cycline B proteins. These signaling events were followed by the specific activation of the intrinsic apoptosis pathway, involving loss of mitochondrial membrane potential (Δψm) and ROS production, cytochrome c release from mitochondria, caspase activation, AIF nuclear translocation, PARP cleavage and nuclear fragmentation. CEUs maintained their efficacy on cells plated on pro-survival extracellular matrices or exhibiting overexpression of P-glycoprotein or the anti-apoptotic protein Bcl-2. Conclusion: Our results suggest that CEUs represent a promising new class of antimicrotubule, antiangiogenic and pro-anoikis agents.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The doxycycline (DOX) is a broad-spectrum antibiotic used in several countries. This drug is part of the list of medicines to the SUS (Unified Health System), a model of health care in Brazil. This study describes the development and validation of a microbiological assay, applying the turbidimetric method for the determination of DOX, as well as the evaluation of the ability of the method in determining the stability of DOX in tablets against acidic and basic hydrolysis, photolytic and oxidative degradations, using Escherichia coli ATCC 10536 as micro-organism test and 3×3 parallel line assay design, with nine tubes for each assay, as recommended by the Brazilian Pharmacopoeia. The developed and validated method showed excellent results of linearity, selectivity, precision, accuracy and robustness. The assay is based on the inhibitory effect of DOX using Escherichia coli ATCC 10536. The results of the assay were treated by analysis of variance and were found to be linear (r= 0.9986) in the range from 4.0 to 9.0μg/mL, precise (repeatability R.S.D.= 0.99 and intermediate precision was confirmed by statistical analysis the mean values obtained from analysis by different analysts) and exact (97.73%). DOX solution exposed to direct UV light, alkaline and acid hydrolysis and hydrogen peroxide causing oxidation were used to evaluate the specificity of the bioassay. Comparison of bioassay and liquid chromatography showed differences in results between methodologies. The results showed that the bioassay is valid, simple and useful alternative methodology for DOX determination in routine quality control.
Resumo:
The discovery and development of a new drug are time-consuming, difficult and expensive. This complex process has evolved from classical methods into an integration of modern technologies and innovative strategies addressed to the design of new chemical entities to treat a variety of diseases. The development of new drug candidates is often limited by initial compounds lacking reasonable chemical and biological properties for further lead optimization. Huge libraries of compounds are frequently selected for biological screening using a variety of techniques and standard models to assess potency, affinity and selectivity. In this context, it is very important to study the pharmacokinetic profile of the compounds under investigation. Recent advances have been made in the collection of data and the development of models to assess and predict pharmacokinetic properties (ADME - absorption, distribution, metabolism and excretion) of bioactive compounds in the early stages of drug discovery projects. This paper provides a brief perspective on the evolution of in silico ADME tools, addressing challenges, limitations, and opportunities in medicinal chemistry.
Resumo:
Arterial hypertension is a chronic disease with a therapeutical challenge for the patient and the physician involved. Patient-independent techniques with good efficacy and tolerability are wanted. The autonomous nervous system insufficiently therapeutically exploited to date, is now approachable by two types of intervention: renal nerve ablation, an endovascular approach without remaining foreign body, and BAT, baroreflex activating therapy using an implantable device stimulating the carotid sinus. The blood pressure lowering potency of BAT appears more than with renal nerve ablation and also clinical study data are more prevalent. With both treatment options the patients having the most profit are insufficiently defined. Given this knowledge, any form of secondary hypertension needs to be excluded beforehand.
Resumo:
BACKGROUND: Standard first-line combination antiretroviral treatment (cART) against human immunodeficiency virus 1 (HIV-1) contains either a nonnucleoside reverse transcriptase inhibitor (NNRTI) or a ritonavir-boosted protease inhibitor (PI/r). Differences between these regimen types in the extent of the emergence of drug resistance on virological failure and the implications for further treatment options have rarely been assessed. METHODS: We investigated virological outcomes in patients from the Swiss HIV Cohort Study initiating cART between January 1, 1999, and December 31, 2005, with an unboosted PI, a PI/r, or an NNRTI and compared genotypic drug resistance patterns among these groups at treatment failure. RESULTS: A total of 489 patients started cART with a PI, 518 with a PI/r, and 805 with an NNRTI. A total of 177 virological failures were observed (108 [22%] PI failures, 24 [5%] PI/r failures, and 45 [6%] NNRTI failures). The failure rate was highest in the PI group (10.3 per 100 person-years; 95% confidence interval [CI], 8.5-12.4). No difference was seen between patients taking a PI/r (2.7; 95% CI, 1.8-4.0) and those taking an NNRTI (2.4; 95% CI, 1.8-3.3). Genotypic test results were available for 142 (80%) of the patients with a virological treatment failure. Resistance mutations were found in 84% (95% CI, 75%-92%) of patients taking a PI, 30% (95% CI, 12%-54%) of patients taking a PI/r, and 66% (95% CI, 49%-80%) of patients taking an NNRTI (P < .001). Multidrug resistance occurred almost exclusively as resistance against lamivudine-emtricitabine and the group-specific third drug and was observed in 17% (95% CI, 9%-26%) of patients taking a PI, 10% (95% CI, 0.1%-32%) of patients taking a PI/r, and 50% (95% CI, 33%-67%) of patients taking an NNRTI (P < .001). CONCLUSIONS: Regimens that contained a PI/r or an NNRTI exhibited similar potency as first-line regimens. However, the use of a PI/r led to less resistance in case of virological failure, preserving more drug options for the future.
Resumo:
This study examined the developmental toxicity of the polycyclic aromatic hydrocarbons (PAHs) 11H-benzo(b)fluorene (BBF) and 4-azapyrene (AP) in comparison to the known teratogen retene. Developmental toxicity assays were performed in zebrafish embryos exposed for 120 h. BBF and retene induced a similar dioxin-like phenotype, whereas AP showed distinct effects, particularly craniofacial malformations. Microarray analysis revealed that for BBF and retene, drug metabolism pathways were induced, which were confirmed by subsequent studies of cyp1a gene expression. For AP, microarray analysis revealed the regulation of genes involved in retinoid metabolism and hematological functions. Studies with a panel of CALUX((R)) bioassays to screen for endocrine disrupting activity of the compounds also revealed novel antagonistic effects of BBF and retene on androgen and progesterone receptors. Classification analysis revealed distinct gene expression profiles for both individual and combined PAH exposure. This study highlights the potential health risk of non priority PAHs.
Resumo:
OBJECTIVE To determine the potency ratio between S-ketamine and racemic ketamine as inductive agents for achieving tracheal intubation in dogs. STUDY DESIGN Prospective, randomized, 'blinded', clinical trial conducted in two consecutive phases. ANIMALS 112 client-owned dogs (ASA I or II). METHODS All animals were premedicated with intramuscular acepromazine (0.02 mg kg(-1) ) and methadone (0.2 mg kg(-1) ). In phase 1, midazolam (0.2 mg kg(-1) ) with either 3 mg kg(-1) of racemic ketamine (group K) or 1.5 mg kg(-1) of S-ketamine (group S) was administered IV, for induction of anaesthesia and intubation. Up to two additional doses of racemic (1.5 mg kg(-1) ) or S-ketamine (0.75 mg kg(-1) ) were administered if required. In phase 2, midazolam (0.2 mg kg(-1) ) with 1 mg kg(-1) of either racemic ketamine (group K) or S-ketamine (group S) was injected and followed by a continuous infusion (1 mg kg minute(-1) ) of each respective drug. Differences between groups were statistically analyzed via t-test, Fisher exact test and ANOVA for repeated measures. RESULTS Demographics and quality and duration of premedication, induction and intubation were comparable among groups. During phase 1 it was possible to achieve tracheal intubation after a single dose in more dogs in group K (n = 25) than in group S (n = 16) (p = 0.046). A dose of 3 mg kg(-1) S-ketamine allowed tracheal intubation in the same number of dogs as 4.5 mg kg(-1) of racemic ketamine. The estimated potency ratio was 1.5:1. During phase 2, the total dose (mean ± SD) of S-ketamine (4.02 ±1.56 mg kg(-1) ) and racemic ketamine (4.01 ± 1.42) required for tracheal intubation was similar. CONCLUSION AND CLINICAL RELEVANCE Racemic and S-ketamine provide a similar quality of anaesthetic induction and intubation. S-ketamine is not twice as potent as racemic ketamine and, if infused, the potency ratio is 1:1.