171 resultados para doxycycline
Resumo:
This article presents details of fabrication, biological activity (i.e., anti-matrix metalloproteinase [anti-MMP] inhibition), cytocompatibility, and bonding characteristics to dentin of a unique doxycycline (DOX)-encapsulated halloysite nanotube (HNT)-modified adhesive. We tested the hypothesis that the release of DOX from the DOX-encapsulated nanotube-modified adhesive can effectively inhibit MMP activity. We incorporated nanotubes, encapsulated or not with DOX, into the adhesive resin of a commercially available bonding system (Scotchbond Multi-Purpose [SBMP]). The following groups were tested: unmodified SBMP (control), SBMP with nanotubes (HNT), and DOX-encapsulated nanotube-modified adhesive (HNT+DOX). Changes in degree of conversion (DC) and microtensile bond strength were evaluated. Cytotoxicity was examined on human dental pulp stem cells (hDPSCs). To prove the successful encapsulation of DOX within the adhesivesbut, more important, to support the hypothesis that the HNT+DOX adhesive would release DOX at subantimicrobial levelswe tested the antimicrobial activity of synthesized adhesives and the DOX-containing eluates against Streptococcus mutans through agar diffusion assays. Anti-MMP properties were assessed via -casein cleavage assays. Increasing curing times (10, 20, 40 sec) led to increased DC values. There were no statistically significant differences (p > .05) in DC within each increasing curing time between the modified adhesives compared to SBMP. No statistically significant differences in microtensile bond strength were noted. None of the adhesives eluates were cytotoxic to the human dental pulp stem cells. A significant growth inhibition of S. mutans by direct contact illustrates successful encapsulation of DOX into the experimental adhesive. More important, DOX-containing eluates promoted inhibition of MMP-1 activity when compared to the control. Collectively, our findings provide a solid background for further testing of encapsulated MMP inhibitors into the synthesis of therapeutic adhesives that may enhance the longevity of hybrid layers and the overall clinical performance of adhesively bonded resin composite restorations.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The doxycycline (DOX) is a broad-spectrum antibiotic used in several countries. This drug is part of the list of medicines to the SUS (Unified Health System), a model of health care in Brazil. This study describes the development and validation of a microbiological assay, applying the turbidimetric method for the determination of DOX, as well as the evaluation of the ability of the method in determining the stability of DOX in tablets against acidic and basic hydrolysis, photolytic and oxidative degradations, using Escherichia coli ATCC 10536 as micro-organism test and 3×3 parallel line assay design, with nine tubes for each assay, as recommended by the Brazilian Pharmacopoeia. The developed and validated method showed excellent results of linearity, selectivity, precision, accuracy and robustness. The assay is based on the inhibitory effect of DOX using Escherichia coli ATCC 10536. The results of the assay were treated by analysis of variance and were found to be linear (r= 0.9986) in the range from 4.0 to 9.0μg/mL, precise (repeatability R.S.D.= 0.99 and intermediate precision was confirmed by statistical analysis the mean values obtained from analysis by different analysts) and exact (97.73%). DOX solution exposed to direct UV light, alkaline and acid hydrolysis and hydrogen peroxide causing oxidation were used to evaluate the specificity of the bioassay. Comparison of bioassay and liquid chromatography showed differences in results between methodologies. The results showed that the bioassay is valid, simple and useful alternative methodology for DOX determination in routine quality control.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Vascular dysfunction associated with two-kidney, one-clip (2K-1C) hypertension may result from both altered matrix metalloproteinase (MMP) activity and higher concentrations of reactive oxygen species (ROS). Doxycycline is considering the most potent MMP inhibitor of tetracyclines and attenuates 2K-1C hypertension-induced high blood pressure and chronic vascular remodeling. Doxycycline might also act as a ROS scavenger and this may contribute to the amelioration of some cardiovascular diseases associated with increased concentrations of ROS. We hypothesized that in addition to its MMP inhibitory effect, doxycycline attenuates oxidative stress and improves nitric oxide (NO) bioavailability in 2K-1C hypertension, thus improving hypertension-induced arterial endothelial dysfunction. Sham operated or 2K-1C hypertensive rats were treated with doxycycline 30 mg/kg/day (or vehicle). After 8 weeks of treatment, aortic rings were isolated to assess endothelium dependent vasorelaxation to A23187. Arterial and systemic levels of ROS were respectively measured using dihydroethidine (DHE) and thiobarbituric acid reactive substances (TBARS). Neutrophils-derived ROS were tested in vitro using the fluoroprobe Carboxy-H(2)DCFDA and human neutrophils stimulated with phorbol 12-myristate 13-acetate (PMA). NO levels were assessed in rat aortic endothelial cells by confocal microscopy. Aortic MMP activity was determined by in situ zymography. Doxycycline attenuated 2K-1C hypertension (169 +/- 17.3 versus 209 +/- 10.9 mm Hg in hypertensive controls, p < 0.05) and protected against hypertension-induced reduction in endothelium-dependent vasorelaxation to A23187 (p < 0.05). Doxycycline also decreased hypertension-induced oxidative stress (p <= 0.05), higher MMP activity (p < 0.01) and improved NO levels in aortic endothelial cells (p < 0.01). Therefore, doxycycline ameliorates 2K-1C hypertension-induced endothelial dysfunction in aortas by inhibiting oxidative stress generation and improving NO bioavailability, in addition to its inhibitory effects on MMP activity. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Osteoarthritis is a chronic joint disease that involves degeneration of articular cartilage. Pre-clinical data suggest that doxycycline might act as a disease-modifying agent for the treatment of osteoarthritis, with the potential to slow cartilage degeneration. This is an update of a Cochrane review first published in 2009.
Resumo:
Bacterial meningitis is characterized by an inflammatory reaction to the invading pathogens that can ultimately lead to sensorineural hearing loss, permanent brain injury, or death. The matrix metalloproteinases (MMPs) and tumor necrosis factor alpha-converting enzyme (TACE) are key mediators that promote inflammation, blood-brain barrier disruption, and brain injury in bacterial meningitis. Doxycycline is a clinically used antibiotic with anti-inflammatory effects that lead to reduced cytokine release and the inhibition of MMPs. Here, doxycycline inhibited TACE with a 50% inhibitory dose of 74 microM in vitro and reduced the amount of tumor necrosis factor alpha released into the cerebrospinal fluid by 90% in vivo. In an infant rat model of pneumococcal meningitis, a single dose of doxycycline (30 mg/kg) given as adjuvant therapy in addition to ceftriaxone 18 h after infection significantly reduced the mortality, the blood-brain barrier disruption, and the extent of cortical brain injury. Adjuvant doxycycline (30 mg/kg given subcutaneously once daily for 4 days) also attenuated hearing loss, as assessed by auditory brainstem response audiometry, and neuronal death in the cochlear spiral ganglion at 3 weeks after infection. Thus, doxycycline, probably as a result of its anti-inflammatory properties, had broad beneficial effects in the brain and the cochlea and improved survival in this model of pneumococcal meningitis in infant rats.
Resumo:
Objective-To evaluate local tissue compatibility of doxycycline hyclate (DOX) in antebrachiocarpal joints of calves. Animals-10 healthy calves between 80 and 110 kg. Procedures-Calves were assigned to 2 treatment groups. Calves in groups DOX(low) and DOX(high) were administered 5 and 10 mg of DOX, respectively, locally in 1 antebrachiocarpal joint. The contralateral joint served as a control joint and was injected with 0.9% NaCl solution. General and local clinical findings were scored. Several variables were assessed in blood and synovial fluid for 9 days. Calves were euthanatized and pathologic changes and drug residues evaluated. Results-Throughout the study, none of the calves had clinical changes or abnormal hematologic values. Significant differences between treatment and control joints were evident only for matrix metalloproteinases at 0.5 hours after injection, with less activity for the DOX-treated joints in both treatment groups. Values for all synovial fluid variables, except nitric oxide, increased significantly during the first 12 to 72 hours after arthrocentesis in control and DOX-treated joints. Histologic examination revealed minimal infiltration of inflammatory cells independent of the treatment. No drug residues were detected 9 days after arthrocentesis in any tissues obtained from the liver, kidneys, fat, and skeletal muscles. Conclusions and Clinical Relevance-DOX had excellent intra-articular compatibility in healthy calves. Arthrocentesis induced a mild transient increase of inflammatory mediators in the synovial fluid. Significant decreases in matrix metalloproteinase activity in DOX-treated joints may indicate a potential chondroprotective effect of DOX.
Resumo:
BACKGROUND: Osteoarthritis is a chronic joint disease that involves degeneration of articular cartilage. Pre-clinical data suggest that doxycycline might act as a disease-modifying agent for the treatment of osteoarthritis, with the potential to slow cartilage degeneration. OBJECTIVES: To examine the effects of doxycycline compared with placebo or no intervention on pain and function in patients with osteoarthritis of the hip or knee. SEARCH STRATEGY: We searched CENTRAL ( The Cochrane Library 2008, issue 3), MEDLINE, EMBASE and CINAHL up to 28 July 2008, checked conference proceedings, reference lists, and contacted authors. SELECTION CRITERIA: We included studies if they were randomised or quasi-randomised controlled trials that compared doxycycline at any dosage and any formulation with placebo or no intervention in patients with osteoarthritis of the knee or hip. DATA COLLECTION AND ANALYSIS: We extracted data in duplicate. We contacted investigators to obtain missing outcome information. We calculated differences in means at follow-up between experimental and control groups for continuous outcomes and risk ratios for binary outcomes. MAIN RESULTS: We found one randomised controlled trial that compared doxycycline with placebo in 431 obese women. After 30 months of treatment, clinical outcomes were similar between the two treatment groups, with a mean difference of -0.20 cm (95% confidence interval (CI) -0.77 to 0.37 cm) on a visual analogue scale from 0 to 10 cm for pain and -1.10 units (95% CI -3.86 to 1.66) for function on the WOMAC disability subscale, which ranges from 17 to 85. These differences correspond to clinically irrelevant effect sizes of -0.08 and -0.09 standard deviation units for pain and function, respectively. The difference in changes in minimum joint space narrowing was in favour of doxycycline (-0.15 mm, 95% CI -0.28 to -0.02 mm), which corresponds to a small effect size of -0.23 standard deviation units. More patients withdrew from the doxycycline group compared with placebo due to adverse events (risk ratio 1.69, 95% CI 1.03 to 2.75). AUTHORS' CONCLUSIONS: The symptomatic benefit of doxycycline is minimal to non-existent. The small benefit in terms of joint space narrowing is of questionable clinical relevance and outweighed by safety problems. Doxycycline should not be recommended for the treatment of osteoarthritis of the knee or hip.
Resumo:
Many diseases affect pre-mRNA splicing, and alternative splicing is a major source of proteome diversity and an important mechanism for modulating gene expression. The ability to regulate a specific splicing event is therefore desirable; for example, to understand splicing-associated pathologies. We have developed methods based on modified U7 snRNAs, which allow us to induce efficient skipping or inclusion of selected exons. Here, we have adapted these U7 tools to a regulatable system that relies on a doxycycline-sensitive version of the Kruppel-associated box (KRAB)/KAP1 transcriptional silencing. Co-transduction of target cells with two lentiviral vectors, one carrying the KRAB protein and the other the regulatable U7 cassette, allows a tight regulation of the modified U7 snRNA. No leakage is observed in the repressed state, whereas full induction can be obtained with doxycycline in ng ml(-1) concentrations. Only a few days are necessary for a full switch, and the induction/repression can be repeated over several cycles without noticeable loss of control. Importantly, the U7 expression correlates with splicing correction, as shown for the skipping of an aberrant beta-globin exon created by a thalassaemic mutation and the promotion of exon 7 inclusion in the human SMN2 gene, an important therapeutic target for spinal muscular atrophy.
Resumo:
OBJECTIVE To investigate the potential of doxycycline to reduce stromelysin and inducible nitric oxide synthase (iNOS) activity in dogs with osteoarthritis (OA) secondary to spontaneous cranial cruciate ligament (CCL) rupture. STUDY DESIGN Prospective, clinical study. ANIMALS Eighty-one dogs with OA secondary to CCL rupture and 54 normal dogs. METHODS Dogs with OA secondary to CCL rupture were divided into 2 groups before surgery. The Doxy-CCl group received 3 to 4 mg/kg doxycycline orally every 24 hours for 7 to 10 days (n = 35). The CCL group received no treatment (n = 46). Synovial fluid, articular cartilage, synovial membrane, and CCL samples were collected during surgery (Doxy-CCL group and CCL group) or immediately after euthanasia from healthy dogs (control group). Synovial fluid samples were examined cytologically. Total nitric oxide (NOt) concentrations were measured in the supernatant of explant cultures of all tissue samples, and stromelysin activity was measured in the supernatant of explant cultures of cartilage. RESULTS NOt concentrations measured in cartilage were significantly lower in the Doxy-CCL group than in the CCL group, but were not different from those measured in the control group. Doxycycline treatment did not have a significant effect on cartilage stromelysin levels. CONCLUSION The findings in this study indicate that doxycycline inhibits NO production in cartilage in dogs with CCL rupture. CLINICAL RELEVANCE Doxycycline may have a role in the treatment of canine OA by inhibiting NO production.
Resumo:
Conversion of the cellular prion protein (PrPC) into the pathogenic isoform (PrPSc) is the fundamental event underlying transmission and pathogenesis of prion diseases. To control the expression of PrPC in transgenic (Tg) mice, we used a tetracycline controlled transactivator (tTA) driven by the PrP gene control elements and a tTA-responsive promoter linked to a PrP gene [Gossen, M. and Bujard, H. (1992) Proc. Natl. Acad. Sci. USA 89, 5547–5551]. Adult Tg mice showed no deleterious effects upon repression of PrPC expression (>90%) by oral doxycycline, but the mice developed progressive ataxia at ≈50 days after inoculation with prions unless maintained on doxycycline. Although Tg mice on doxycycline accumulated low levels of PrPSc, they showed no neurologic dysfunction, indicating that low levels of PrPSc can be tolerated. Use of the tTA system to control PrP expression allowed production of Tg mice with high levels of PrP that otherwise cause many embryonic and neonatal deaths. Measurement of PrPSc clearance in Tg mice should be possible, facilitating the development of pharmacotherapeutics.