967 resultados para double-dark state
Resumo:
A system of cascaded qubits interacting via the one-way exchange of photons is studied. While for general operating conditions the system evolves to a superposition of Bell states (a dark state) in the long-time limit, under a particular resonance condition no steady state is reached within a finite time. We analyze the conditional quantum evolution (quantum trajectories) to characterize the asymptotic behavior under this resonance condition. A distinct bimodality is observed: for perfect qubit coupling, the system either evolves to a maximally entangled Bell state without emitting photons (the dark state) or executes a sustained entangled-state cycle-random switching between a pair of Bell states while emitting a continuous photon stream; for imperfect coupling, two entangled-state cycles coexist, between which a random selection is made from one quantum trajectory to another.
Resumo:
Guanylate cyclase activating protein-1 (GCAP1) is required for activation of retinal guanylate cyclase-1 (RetGC1), which is essential for recovery of photoreceptor cells to the dark state. In this paper, experimentally derived observations are reported that help in explaining why a proline→leucine mutation at position 50 of human GCAP1 results in cone–rod dystrophy in a family carrying this mutation. The primary amino acid sequence of wild-type GCAP1 was mutated using site-directed mutagenesis to give a leucine at position 50. In addition, serine replaced a glutamic acid residue at position 6 to promote N‐terminal myristoylation, yielding the construct GCAP1 E6S/P50L. The enzyme was over-expressed in Escherichia coli cells, isolated and purified before being used in assays with RetGC1, characterized by circular dichroism (CD) spectroscopy, and investigated for protease resistance and thermal stability. Assays of cyclic guanosine monophosphate (cGMP) synthesis from guanosine triphosphate by RetGC1 in the presence of E6S/P50L showed that E6S/P50L could activate RetGC1 and displayed similar calcium sensitivity to wild-type GCAP1. In addition, E6S/P50L and wild-type GCAP1 possess similar CD spectra. However, there was a marked increase in the susceptibility to protease degradation and also a reduction in the thermal stability of E6S/P50L as observed by both the cGMP assay and CD spectroscopy. It is therefore suggested that although GCAP1 E6S/P50L has a similar activity and calcium dependency profile to the wild-type GCAP1, its lower stability could reduce its cellular concentration, which would in turn alter [Ca2+] and result in death of cells.
Resumo:
We observe coherent population trapping (CPT) in a two-electron atom-Yb-174-using the S-1(0), F= 0 -> P-3(1), F `= 1 transition. CPT is not possible for such a transition according to one-electron theory because the magnetic sublevels form a V-type system, but in a two-electron atom like Yb, the interaction of the electrons transforms the level structure into a V-type system, which allows the formation of a dark state and hence the observation of CPT. Since the two levels involved are degenerate, we use a magnetic field to lift the degeneracy. The single fluorescence dip then splits into five dips-the central unshifted one corresponds to coherent population oscillation, while the outer four are due to CPT. The linewidth of the CPT resonance is about 300 kHz and is limited by the natural linewidth of the excited state, which is to be expected because the excited state is involved in the formation of the dark state.
Resumo:
We propose a universal quantum computation scheme for trapped ions in thermal motion via the technique of adiabatic passage, which incorporates the advantages of both the adiabatic passage and the model of trapped ions in thermal motion. Our scheme is immune from the decoherence due to spontaneous emission from excited states as the system in our scheme evolves along a dark state. In our scheme the vibrational degrees of freedom are not required to be cooled to their ground states because they are only virtually excited. It is shown that the fidelity of the resultant gate operation is still high even when the magnitude of the effective Rabi frequency moderately deviates from the desired value.
Resumo:
We investigate the Kerr nonlinearity of a V-type three-level atomic system where the upper two states decay outside to another state and hence spontaneous generated coherence may exist. It is shown that dark state and hence perfect transparency present under certain conditions. Meanwhile, the Kerr nonlinearity can be controlled by manipulation of the decay rates and the splitting of the two excited states. Therefore, enhanced Kerr nonlinearity without absorption can be obtained under proper parameters.
Resumo:
The giant enhancement of Kerr nonlinearity in a four-level tripod type system is investigated theoretically. By tuning the value of the Rabi frequency of the coherent control field, owing to the double dark resonances, the giant-enhanced Kerr nonlinearity can be achieved within the right transparency window. The in fluence of Doppler broadening is also discussed.
Resumo:
The processes of transfer ionization in He2+ -He collisions at energies ranging from 20 to 40 keV have been studied experimentally by means of cold target recoil ions momentum spectroscopy. From the longitudinal momentum spectra of recoil ions, different mechanisms of transfer ionization have been obtained. The results show that one of the electrons of helium atom being captured into the ground state of projectile ion He2+ and the other one emitted to the continuum state of projectile or target are the dominant mechanisms of transfer ionization. The autoionization cross section of projectile after two-electron capture into a double excited state is small. Transfer ionization for one target electron capture into ground state and the other one into the continuum of projectile mainly occurs at large impact parameter collisions.
Resumo:
A realistic model of the dipole radiation forces in transverse Doppler cooling (with a s+-s- laser configuration) of an atomic beam of group 13 elements is studied within the quantum-kinetic equation framework. The full energy level sub-structure for such an atom with I = 0 (such as 66Ga) is analysed. Two cooling strategies are investigated; the first involving the 2P3/2 ? 2D5/2 transition and the second a dual laser cooling experiment involving transitions 2P1/2 and 2P3/2 ? 2S1/2. The latter scheme creates a velocity-independent dark-state resonance that inhibits a steady-state dipole cooling force. However, time-dependent calculations show that transient cooling forces are present that could be exploited for laser cooling purposes in pulsed laser fields.
Resumo:
Mode-mixing of coherent excitations of a trapped Bose-Einstein condensate is modeled using the Bogoliubov approximation. Calculations are presented for second-harmonic generation between the two lowest-lying even-parity m=0 modes in an oblate spheroidal trap. Hybridization of the modes of the breather (l=0) and surface (l=4) states leads to the formation of a Bogoliubov dark state near phase-matching resonance so that a single mode is coherently populated. Efficient harmonic generation requires a strong coupling rate, sharply-defined and well-separated frequency spectrum, and good phase matching. We find that in all three respects the quantal results are significantly different from hydrodynamic predictions. Typically the second-harmonic conversion rate is half that given by an equivalent hydrodynamic estimate.
Resumo:
In dieser Arbeit wurden Untersuchungen zur Fluoreszenzdynamik und zum Mechanismus des Photobleichens einzelner Farbstoffmoleküle einer homologen Reihe von Rylentetracarbonsäurediimiden durchgeführt. Mit der Erweiterung des elektronischen π-Systems verringert sich die HOMO/LUMO-Energiedifferenz, so dass strahlungslose Relaxationsprozesse gemäß des Energielückengesetzes zunehmen. Die konfokale Einzelmolekülspektroskopie in Kombination mit zeitkorrelierter Einzelphotonenzählung ermöglicht es, Fluktuationen der inneren Konversionsrate zu detektieren. Der limitierende Faktor jedes Einzelmolekülexperiments ist die Photostabilität der Moleküle. Für die homologe Reihe konnten mindestens zwei Photobleichmechanismen identifiziert werden. Wenn Singulett-Sauerstoff durch Selbstsensibilisierung erzeugt werden kann, ist unter Luft die Photooxidation der wahrscheinlichste Mechanismus. Unter Ausschluss von Luftsauerstoff spielt die Bildung langlebiger Dunkelzustände eine entscheidende Rolle, die bevorzugt über höher angeregte Triplett- und Singulett-Zustände abläuft. Es wird angenommen, dass es sich hierbei um einen reversiblen Ionisierungsprozess handelt, bei dem das Radikal-Kation der Rylendiimide gebildet wird. Es konnte gezeigt werden, dass durch eine geeignete Wahl der Anregungsbedingungen die Dunkelzustandspopulierung verhindert und zugleich die Photostabilität der Fluorophore deutlich erhöht wird. Durch die Verknüpfung der beiden niedrigsten Homologen erhält man ein Donor-Akzeptor-Modellsystem, bei dem die Anregungsenergie mit hoher Effizienz vom Donor- auf den Akzeptor-Chromophor übertragen wird. In der Fluoreszenz einzelner Bichromophore wurden bei selektiver Anregung des Donors kollektive Auszeiten beobachtet, die durch effiziente Singulett-Triplett-Annihilation verursacht werden.
Resumo:
For understanding the major- and minor-groove hydration patterns of DNAs and RNAs, it is important to understand the local solvation of individual nucleobases at the molecular level. We have investigated the 2-aminopurine center dot H2O. monohydrate by two-color resonant two-photon ionization and UV/UV hole-burning spectroscopies, which reveal two isomers, denoted A and B. The electronic spectral shift delta nu of the S-1 <- S-0 transition relative to bare 9H-2-aminopurine (9H-2AP) is small for isomer A (-70 cm(-1)), while that of isomer B is much larger (delta nu = 889 cm(-1)). B3LYP geometry optimizations with the TZVP basis set predict four cluster isomers, of which three are doubly H-bonded, with H2O acting as an acceptor to a N-H or -NH2 group and as a donor to either of the pyrimidine N sites. The "sugar-edge" isomer A is calculated to be the most stable form with binding energy D-e = 56.4 kJ/mol. Isomers B and C are H-bonded between the -NH2 group and pyrimidine moieties and are 2.5 and 6.9 kJ/mol less stable, respectively. Time-dependent (TD) B3LYP/TZVP calculations predict the adiabatic energies of the lowest (1)pi pi* states of A and B in excellent agreement with the observed 0(0)(0) bands; also, the relative intensities of the A and B origin bands agree well with the calculated S-0 state relative energies. This allows unequivocal identification of the isomers. The R2PI spectra of 9H-2AP and of isomer A exhibit intense low-frequency out-of-plane overtone and combination bands, which is interpreted as a coupling of the optically excited (1)pi pi* state to the lower-lying (1)n pi* dark state. In contrast, these overtone and combination bands are much weaker for isomer B, implying that the (1)pi pi* state of B is planar and decoupled from the (1)n pi* state. These observations agree with the calculations, which predict the (1)n pi* above the (1)pi pi* state for isomer B but below the (1)pi pi* for both 9H-2AP and isomer A.
Resumo:
The spatio-temporal control of gene expression is fundamental to elucidate cell proliferation and deregulation phenomena in living systems. Novel approaches based on light-sensitive multiprotein complexes have recently been devised, showing promising perspectives for the noninvasive and reversible modulation of the DNA-transcriptional activity in vivo. This has lately been demonstrated in a striking way through the generation of the artificial protein construct light-oxygen-voltage (LOV)-tryptophan-activated protein (TAP), in which the LOV-2-Jα photoswitch of phototropin1 from Avena sativa (AsLOV2-Jα) has been ligated to the tryptophan-repressor (TrpR) protein from Escherichia coli. Although tremendous progress has been achieved on the generation of such protein constructs, a detailed understanding of their functioning as opto-genetical tools is still in its infancy. Here, we elucidate the early stages of the light-induced regulatory mechanism of LOV-TAP at the molecular level, using the noninvasive molecular dynamics simulation technique. More specifically, we find that Cys450-FMN-adduct formation in the AsLOV2-Jα-binding pocket after photoexcitation induces the cleavage of the peripheral Jα-helix from the LOV core, causing a change of its polarity and electrostatic attraction of the photoswitch onto the DNA surface. This goes along with the flexibilization through unfolding of a hairpin-like helix-loop-helix region interlinking the AsLOV2-Jα- and TrpR-domains, ultimately enabling the condensation of LOV-TAP onto the DNA surface. By contrast, in the dark state the AsLOV2-Jα photoswitch remains inactive and exerts a repulsive electrostatic force on the DNA surface. This leads to a distortion of the hairpin region, which finally relieves its tension by causing the disruption of LOV-TAP from the DNA.
Resumo:
Antiferroelectric liquid crystals are attractive for microdisplay applications, because of their fast switching and wide viewing angle; however the pretransitional effect reduces the contrast of the display. As a promising alternative orthoconic antiferroelectric liquid crystals (OAFLC) with a cone angle of 90º provide a good dark state between crossed polarized independently of the cell rotation. These materials are properly surface stabilized in 1.5μm thick cell required for π retardation, which limits their use in display applications. In this work, new OAFLC mixtures have been surface stabilized in thick cells. This achievement may open a new area of OAFLC applications in photonic devices.
Resumo:
A key step in signal transduction in the visual cell is the light-induced conformational change of rhodopsin that triggers the binding and activation of the guanine nucleotide-binding protein. Site-directed mAbs against bovine rhodopsin were produced and used to detect and characterize these conformational changes upon light activation. Among several antibodies that bound exclusively to the light-activated state, an antibody (IgG subclass) with the highest affinity (Ka ≈ 6 × 10−9 M) was further purified and characterized. The epitope of this antibody was mapped to the amino acid sequence 304–311. This epitope extends from the central region to the cytoplasmic end of the seventh transmembrane helix and incorporates a part of a highly conserved NPXXY motif, a critical region for signaling and agonist-induced internalization of several biogenic amine and peptide receptors. In the dark state, no binding of the antibody to rhodopsin was detected. Accessibility of the epitope to the antibody correlated with formation of the metarhodopsin II photointermediate and was reduced significantly at the metarhodopsin III intermediate. Further, incubation of the antigen–antibody complex with 11-cis-retinal failed to regenerate the native rhodopsin chromophore. These results suggest significant and reversible conformational changes in close proximity to the cytoplasmic end of the seventh transmembrane helix of rhodopsin that might be important for folding and signaling.
Resumo:
A major therapeutic target in the search for a cure to the devastating Alzheimer's disease is γ-secretase. This activity resides in a multiprotein enzyme complex responsible for the generation of Aβ42 peptides, precipitates of which are thought to cause the disease. γ-Secretase is also a critical component of the Notch signal transduction pathway; Notch signals regulate development and differentiation of adult self-renewing cells. This has led to the hypothesis that therapeutic inhibition of γ-secretase may interfere with Notch-related processes in adults, most alarmingly in hematopoiesis. Here, we show that application of γ-secretase inhibitors to fetal thymus organ cultures interferes with T cell development in a manner consistent with loss or reduction of Notch1 function. Progression from an immature CD4−/CD8− state to an intermediate CD4+/CD8+ double-positive state was repressed. Furthermore, treatment beginning later at the double-positive stage specifically inhibited CD8+ single-positive maturation but did not affect CD4+ single-positive cells. These results demonstrate that pharmacological γ-secretase inhibition recapitulates Notch1 loss in a vertebrate tissue and present a system in which rapid evaluation of γ-secretase-targeted pharmaceuticals for their ability to inhibit Notch activity can be performed in a relevant context.