991 resultados para diversification rate
Resumo:
We describe a simple comparative method for determining whether rates of diversification are correlated with continuous traits in species-level phylogenies. This involves comparing traits of species with net speciation rate (number of nodes linking extant species with the root divided by the root to tip evolutionary distance), using a phylogenetically corrected correlation. We use simulations to examine the power of this test. We find that the approach has acceptable power to uncover relationships between speciation and a continuous trait and is robust to background random extinction; however, the power of the approach is reduced when the rate of trait evolution is decreased. The test has low power to relate diversification to traits when extinction rate is correlated with the trait. Clearly, there are inherent limitations in using only data on extant species to infer correlates of extinction; however, this approach is potentially a powerful tool in analyzing correlates of speciation.
Resumo:
t is well known that when assets are randomly-selected and combined in equal proportions in a portfolio, the risk of the portfolio declines as the number of different assets increases without affecting returns. In other words, increasing portfolio size should improve the risk/return trade-off compared with a portfolio of asset size one. Therefore, diversifying among several property funds may be a better alternative for investors compared to holding only one property fund. Nonetheless, it also well known that with naïve diversification although risk always decreases with portfolio size, it does so at a decreasing rate so that at some point the reduction in portfolio risk, from adding another fund, becomes negligible. Based on this fact, a reasonable question to ask is how much diversification is enough, or in other words, how many property funds should be included in a portfolio to minimise return volatility.
Resumo:
Neotropical forests have brought forth a large proportion of the world`s terrestrial biodiversity, but the underlying evolutionary mechanisms and their timing require further elucidation. Despite insights gained from phylogenetic studies, uncertainties about molecular clock rates have hindered efforts to determine the timing of diversification processes. Moreover, most molecular research has been detached from the extensive body of data on Neotropical geology and paleogeography. We here examine phylogenetic relationships and the timing of speciation events in a Neotropical flycatcher genus (Myiopagis) by using calibrations from modern geologic data in conjunction with a number of recently developed DNA sequence dating algorithms and by comparing these estimates with those based on a range of previously proposed molecular clock rates. We present a well-supported hypothesis of systematic relationships within the genus. Our age estimates of Myiopagis speciation events based on paleogeographic data are in close agreement with nodal ages derived from a ""traditional"" avian mitochondrial 2%/My clock, while contradicting other clock rates. Our comparative approach corroborates the consistency of the traditional avian mitochondrial clock rate of 2%/My for tyrant-flycatchers. Nevertheless, our results argue against the indiscriminate use of molecular clock rates in evolutionary research and advocate the verification of the appropriateness of the traditional clock rate by means of independent calibrations in individual studies. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The toucan genus Ramphastos (Piciformes: Ramphastidae) has been a model in the formulation of Neotropical paleobiogeographic hypotheses. Weckstein (2005) reported on the phylogenetic history of this genus based on three mitochondrial genes, but some relationships were weakly supported and one of the subspecies of R. vitellinus (citreolaemus) was unsampled. This study expands on Weckstein (2005) by adding more DNA sequence data (including a nuclear marker) and more samples, including R v. citreolaemus. Maximum parsimony, maximum likelihood, and Bayesian methods recovered similar trees, with nodes showing high support. A monophyletic R. vitellinus complex was strongly supported as the sister-group to R. brevis. The results also confirmed that the southeastern and northern populations of R. vitellinus ariel are paraphyletic. X v. citreolaemus is sister to the Amazonian subspecies of the vitellinus complex. Using three protein-coding genes (COI, cytochrome-b and ND2) and interval-calibrated nodes under a Bayesian relaxed-clock framework, we infer that ramphastid genera originated in the middle Miocene to early Pliocene, Ramphastos species originated between late Miocene and early Pleistocene, and intra-specific divergences took place throughout the Pleistocene. Parsimony-based reconstruction of ancestral areas indicated that evolution of the four trans-Andean Ramphastos taxa (R. v. citreolaemus, R. a. swainsonii, R. brevis and R. sulfuratus) was associated with four independent dispersals from the cis-Andean region. The last pulse of Andean uplift may have been important for the evolution of R. sulfuratus, whereas the origin of the other trans-Andean Ramphastos taxa is consistent with vicariance due to drying events in the lowland forests north of the Andes. Estimated rates of molecular evolution were higher than the ""standard"" bird rate of 2% substitutions/site/million years for two of the three genes analyzed (cytochrome-b and ND2). (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Includes bibliography
Resumo:
We develop an open economy macroeconomic model with real capital accumulation and microeconomic foundations. We show that expansionary monetary policy causes exchange rate overshooting, not once, but potentially twice; the secondary repercussion comes through the reaction of firms to changed asset prices and the firms' decisions to invest in real capital. The model sheds further light on the volatility of real and nominal exchange rates, and it suggests that changes in corporate sector profitability may affect exchange rates through international portfolio diversification in corporate securities.
Resumo:
For 21 strains of Salmonella enterica, nucleotide sequences were obtained for three invasion genes, spaO, spaP, and spaQ, of the chromosomal inv/spa complex, the products of which form a protein export system required for entry of the bacteria into nonphagocytic host cells. These genes are present in all eight subspecies of the salmonellae, and homologues occur in a variety of other bacteria, including the enteric pathogens Shigella and Yersinia, in which they are plasmid borne. Evolutionary diversification of the invasion genes among the subspecies of S. enterica has been generally similar in pattern and average rate to that of housekeeping genes. However, the range of variation in evolutionary rate among the invasion genes is unusually large, and there is a relationship between the evolutionary rate and cellular location of the invasion proteins, possibly reflecting diversifying selection on exported proteins in adaptation to variable host factors in extracellular environments. The SpaO protein, which is hypervariable in S. enterica and exhibits only 24% sequence identity with its homologues in Shigella and Yersinia, is secreted. In contrast, the membrane-associated proteins SpaP, SpaQ, and InvA are weakly polymorphic and have > 60% sequence identity with the corresponding proteins of other enteric bacteria. Acquisition of the inv/spa genes may have been a key event in the evolution of the salmonellae as pathogens, following which the invention of flagellar phase shifting facilitated niche expansion to include warm-blooded vertebrates.
Resumo:
Raman spectroscopy of formamide-intercalated kaolinites treated using controlled-rate thermal analysis technology (CRTA), allowing the separation of adsorbed formamide from intercalated formamide in formamide-intercalated kaolinites, is reported. The Raman spectra of the CRTA-treated formamide-intercalated kaolinites are significantly different from those of the intercalated kaolinites, which display a combination of both intercalated and adsorbed formamide. An intense band is observed at 3629 cm-1, attributed to the inner surface hydroxyls hydrogen bonded to the formamide. Broad bands are observed at 3600 and 3639 cm-1, assigned to the inner surface hydroxyls, which are hydrogen bonded to the adsorbed water molecules. The hydroxyl-stretching band of the inner hydroxyl is observed at 3621 cm-1 in the Raman spectra of the CRTA-treated formamide-intercalated kaolinites. The results of thermal analysis show that the amount of intercalated formamide between the kaolinite layers is independent of the presence of water. Significant differences are observed in the CO stretching region between the adsorbed and intercalated formamide.
Resumo:
The thermal behaviour of halloysite fully expanded with hydrazine-hydrate has been investigated in nitrogen atmosphere under dynamic heating and at a constant, pre-set decomposition rate of 0.15 mg min-1. Under controlled-rate thermal analysis (CRTA) conditions it was possible to resolve the closely overlapping decomposition stages and to distinguish between adsorbed and bonded reagent. Three types of bonded reagent could be identified. The loosely bonded reagent amounting to 0.20 mol hydrazine-hydrate per mol inner surface hydroxyl is connected to the internal and external surfaces of the expanded mineral and is present as a space filler between the sheets of the delaminated mineral. The strongly bonded (intercalated) hydrazine-hydrate is connected to the kaolinite inner surface OH groups by the formation of hydrogen bonds. Based on the thermoanalytical results two different types of bonded reagent could be distinguished in the complex. Type 1 reagent (approx. 0.06 mol hydrazine-hydrate/mol inner surface OH) is liberated between 77 and 103°C. Type 2 reagent is lost between 103 and 227°C, corresponding to a quantity of 0.36 mol hydrazine/mol inner surface OH. When heating the complex to 77°C under CRTA conditions a new reflection appears in the XRD pattern with a d-value of 9.6 Å, in addition to the 10.2 Ĺ reflection. This new reflection disappears in contact with moist air and the complex re-expands to the original d-value of 10.2 Å in a few h. The appearance of the 9.6 Å reflection is interpreted as the expansion of kaolinite with hydrazine alone, while the 10.2 Å one is due to expansion with hydrazine-hydrate. FTIR (DRIFT) spectroscopic results showed that the treated mineral after intercalation/deintercalation and heat treatment to 300°C is slightly more ordered than the original (untreated) clay.