963 resultados para diurnal surface currents
Resumo:
Eutrophication favours harmful algal blooms worldwide. The blooms cause toxic outbreaks and deteriorated recreational and aesthetic values, causing both economic loss and illness or death of humans and animals. The Baltic Sea is the world s only large brackish water habitat with recurrent blooms of toxic cyanobacteria capable of biological fixation of atmospheric nitrogen gas. Phosphorus is assumed to be the main limiting factor, along with temperature and light, for the growth of these cyanobacteria. This thesis evaluated the role of phosphorus nutrition as a regulating factor for the occurrence of nitrogen-fixing cyanobacteria blooms in the Baltic Sea, utilising experimental laboratory and field studies and surveys on varying spatial scales. Cellular phosphorus sources were found to be able to support substantial growth of the two main bloom forming species Aphanizomenon sp. and Nodularia spumigena. However, N. spumigena growth seemed independent of phosphorus source, whereas, Aphanizomenon sp. grew best in a phosphate enriched environment. Apparent discrepancies with field observations and experiments are explained by the typical seasonal temperature dependent development of Aphanizomenon sp. and N. spumigena biomass allowing the two species to store ambient pre-bloom excess phosphorus in different ways. Field experiments revealed natural cyanobacteria bloom communities to be predominantly phosphorus deficient during blooms. Phosphate additions were found to increase the accumulation of phosphorus relatively most in the planktonic size fraction dominated by the nitrogen-fixing cyanobacteria. Aphanizomenon sp. responded to phosphate additions whereas the phosphorus nutritive status of N. spumigena seemed independent of phosphate addition. The seasonal development of phosphorus deficiency is different for the two species with N. spumigena showing indications of phosphorus deficiency during a longer time period in the open sea. Coastal upwelling introduces phosphorus to the surface layer during nutrient deficient conditions in summer. The species-specific ability of Aphanizomenon sp. and N. spumigena to utilise phosphate enrichment of the surface layer caused by coastal upwelling was clarified. Typical bloom time vertical distributions of biomass maxima were found to render N. spumigena more susceptible to advection by surface currents caused by coastal upwellings. Aphanizomenon sp. populations residing in the seasonal thermocline were observed to be able to utilise the phosphate enrichment and a bloom was produced with a two to three week time lag subsequent to the relaxation of upwelling. Consistent high concentrations of dissolved inorganic phosphorus, caused by persistent internal loading of phosphorus, was found to be the main source of phosphorus for large-scale pelagic blooms. External loads were estimated to contribute with only a fraction of available phosphorus for open sea blooms. Remineralization of organic forms of phosphorus along with vertical mixing to the permanent halocline during winter set the level of available phosphorus for the next growth season. Events such as upwelling are important in replenishing phosphate concentrations during the nutrient deplete growth season. Autecological characteristics of the two main bloom forming species favour Aphanizomenon sp. populations in utilising the abundant excess phosphate concentrations and phosphate pulses mediated through upwelling. Whilst, N. spumigena displays predominant phosphorus limited growth mode and relies on more scarce cellular phosphorus stores and presumably dissolved organic phosphorus compounds for growth. The Baltic Sea is hypothesised to be in an inhibited state of recovery due to the extensive historical external nutrient loading, extensive internal phosphorus loading and the substantial nitrogen load caused by cyanobacteria nitrogen fixation. This state of the sea is characterised as a vicious circle .
Resumo:
In order to meet the ever growing demand for the prediction of oceanographic parametres in the Indian Ocean for a variety of applications, the Indian National Centre for Ocean Information Services (INCOIS) has recently set-up an operational ocean forecast system, viz. the Indian Ocean Forecast System (INDOFOS). This fully automated system, based on a state-of-the-art ocean general circulation model issues six-hourly forecasts of the sea-surface temperature, surface currents and depths of the mixed layer and the thermocline up to five-days of lead time. A brief account of INDOFOS and a statistical validation of the forecasts of these parametres using in situ and remote sensing data are presented in this article. The accuracy of the sea-surface temperature forecasts by the system is high in the Bay of Bengal and the Arabian Sea, whereas it is moderate in the equatorial Indian Ocean. On the other hand, the accuracy of the depth of the thermocline and the isothermal layers and surface current forecasts are higher near the equatorial region, while it is relatively lower in the Bay of Bengal.
Resumo:
Study of Oceans dynamics and forecast is crucial as it influences the regional climate and other marine activities. Forecasting oceanographic states like sea surface currents, Sea surface temperature (SST) and mixed layer depth at different time scales is extremely important for these activities. These forecasts are generated by various ocean general circulation models (OGCM). One such model is the Regional Ocean Modelling System (ROMS). Though ROMS can simulate several features of ocean, it cannot reproduce the thermocline of the ocean properly. Solution to this problem is to incorporates data assimilation (DA) in the model. DA system using Ensemble Transform Kalman Filter (ETKF) has been developed for ROMS model to improve the accuracy of the model forecast. To assimilate data temperature and salinity from ARGO data has been used as observation. Assimilated temperature and salinity without localization shows oscillations compared to the model run without assimilation for India Ocean. Same was also found for u and v-velocity fields. With localization we found that the state variables are diverging within the localization scale.
Resumo:
This letter studies the impact of electrode segmentation on energy harvesting with piezoelectrics. For cases where the load can be distributed, it is concluded that segmentation of electrodes helps to improve energy content by minimizing surface currents. Using a ribbon of polyvinylidene fluoride under tension as an example, we show that using a six segmented electrode improves energy content by a factor of 2.5. Power delivery remains almost constant except for an anomalous increase when the number of segments is made large. Models are developed to predict improvements in energy content and power delivery.
Resumo:
ENGLISH: A study of the temporal and spatial distribution of larval tunas and the concomitant oceanic conditions was made in cooperation with the Direccion General de Pesca e Industrias Conexas of Mexico. Field work consisted of eight hydrographic cruises made from October 1966 through August 1967 near the entrance of the Gulf of California. From January through April, surface currents were southerly at velocities up to 20 cm/sec; currents in June were variable in direction and mostly less than 10 cm/sec; by August the surface current was northerly at 10-15 cm/sec. Surface winds were usually secondary to the distribution of mass as an influence on the surface circulation. Currents at 100 m were generally similar in direction to those at the surface, but the water moved more slowly. Between the surface and 100 m, southbound currents crossed the entrance of the Gulf at velocities of 5-10 cm/sec during January and April, forming frontal boundaries with the California Current water, which often occurred south of the entrance. From April to August, the median concentration of surface chlorophyll a increased from 0.65 to 0.97 mg/m3, while the median productivity increased from 5.6 mgC/m3/day in April to 17.8 mgC/m3/day in June before returning to 2.6 mgC/m3/day in August. Primary productivity was closely correlated with the concentration of surface chlorophyll a. Productivity was generally higher in the vicinity of the Gulf than that found for water in the open Pacific. Productivity was highest near Islas Las Tres Marias and second highest near Cabo San Lucas, both locations of local upwelling. The standing crop of phytoplankton was shown to be subjected to progressively heavier grazing pressure in the spring and summer by zooplankton. SPANISH: Un estudio de la distribución temporal y espacial de las larvas de atún y de las condiciones oceánicas concomitantes fue realizado en cooperación con la Dirección General de Pesca e Industrias Conexas de México. El trabajo experimental consistió en ocho cruceros hidrográficos realizados desde octubre 1966 hasta agosto 1967, cerca a la entrada del Golfo de California. De enero a abril, las corrientes superficiales fueron meridionales alcanzando velocidades hasta de 20 cm/seg; las corrientes en junio fueron variables en dirección y la mayoría con una velocidad de menos de 10 cm/seg; en agosto la corriente superficial fue septentrional a 10-15 cm/seg, Los vientos superficiales fueron por lo común secundarios a la dístríbucíón de la masa, como una influencia de la circulación superficial. Las corrientes a 100 m fueron generalmente similares en dirección a las de la superficie, pero el agua se movió más lentamente. Entre la superficie y los 100 m, las corrientes que se dirigen hacia el sur cruzaron la entrada del Golfo a velocidades de 5-10 cm/seg durante enero y abril formando límites frontales con el agua de la Corriente de California, que apareció a menudo al sur de la entrada. De abril a agosto, la concentración media de la clorofila a superficial aumentó de 0.65 a 0.97 mg/m3, mientras que la productividad mediana aumentó de 5.6 mgC/m3/día en abril hasta 17.8 mgC/m3/día en junio antes de regresar a 2.6 mgC/m3/día en agosto. La productividad primaria se correlacionó estrechamente con la concentración de clorofila a superficial. La productividad fue generalmente más alta en la vecindad del Golfo que aquella encontrada en el agua de alta mar del Pacífico. La productividad fue más alta cerca a las Islas Tres Marías, y el segundo máximo fue cerca al Cabo San Lucas, ambas localidades de afloramiento local. Se indicó que la reserva permanente de fitoplancton estaba sujeta por el zooplancton a una fuerta presión progresiva de apacentamiento en la primavera y el verano. (PDF contains 116 pages.)
Resumo:
This report presents the results of a two-year investigation and summary of oceanographic satellite data obtained from multiple operational data providers and sources, spanning years of operational data collection. Long-term summaries of Sea Surface Temperature (SST) and SST fronts, Sea Surface Height Anomalies (SSHA), surface currents, ocean color chlorophyll and turbidity, and winds are provided. Merged satellite oceanographic data revealed information on: (1) seasonal cycles and timing of transition periods; (2) linkages between seasonal effects (warming and cooling), upwelling processes and transport; and (3) nutrient/sediment sources, sinks, and physical limiting factors controlling surface response for Olympic Coast marine environments. These data and information can be used for building relevant hind cast models, ecological forecasts, and regional environmental indices (e.g. upwelling, climate, “hot spot”) on biological distribution and/or response in the PNW.
Resumo:
For a period of one year beginning December 1977, drift card experiments were conducted off the western and southern coasts of Panay Island to determine the surface currents in the area. Of a total 2,384 drift cards released during the study, 382 (16.02%) were recovered, 92% of them within 30 days following dispatch. The surface currents in the study area are strongly influenced, in direction and speed, by the prevailing monsoon winds. During the NE monsoon period, the surface currents move away from the coast; during the SW monsoon, toward and/or parallel to the coast. Based on the results, the probable movement and transport of milkfish (Chanos chanos) eggs and larvae from the spawning ground to the fry collection ground are also discussed.
Resumo:
Thermal fronts detected using multiple satellite sensors have been integrated to provide new information on the spatial and seasonal distribution of oceanic fronts in the North Atlantic. The branching of the North Atlantic Current (NAC) as it encounters the Mid-Atlantic Ridge (MAR) is reflected in surface thermal fronts, which preferentially occur at the Charlie Gibbs Fracture Zone (CGFZ) and several smaller fracture zones. North of the CGFZ there are few thermal fronts, contrasting with the region to the south, where there are frequent surface thermal fronts that are persistent seasonally and interannually. The alignment of the fronts confirms that the shallower Reykjanes Ridge north of the CGFZ is more of a barrier to water movements than the ridge to the south. Comparison of front distributions with satellite altimetry data indicates that the MAR influence on deep ocean currents is also frequently exhibited in surface temperature. The improved spatial and temporal resolution of the front analysis has revealed consistent seasonality in the branching patterns. These results contribute to our understanding of the variability of the NAC, and the techniques for visualising oceanic fronts can be applied in other regions to reveal details of surface currents that cannot be resolved using satellite altimetry or in situ measurements.
Resumo:
The ESA Data User Element (DUE) funded GlobCurrent project (http://www.globcurrent.org) aims to: (i) advance the quantitative estimation of ocean surface currents from satellite sensor synergy; and (ii) demonstrate impact in user-led scientific, operational and commercial applications that, in turn, will improve and strengthen the uptake of satellite measurements. Today, a synergetic approach for quantitative analysis can build on high-resolution imaging radar and spectrometer data, infrared radiometer data and radar altimeter measurements. It will further integrate Sentinel-3 in combination with Sentinel-1 SAR data. From existing and past missions, it is often demonstrated that sharp gradients in the sea surface temperature (SST) field and the ocean surface chlorophyll-a distribution are spatially correlated with the sea surface roughness anomaly fields at small spatial scales, in the sub-mesocale (1-10 km) to the mesoscale (30-80 km). At the larger mesoscale range (>50 km), information derived from radar altimeters often depict the presence of coherent structures and eddies. The variability often appears largest in regions where the intense surface current regimes (>100 - 200 km) are found. These 2-dimensional structures manifested in the satellite observations represent evidence of the upper ocean (~100-200 m) dynamics. Whereas the quasi geostrophic assumption is valid for the upper ocean dynamics at the larger scale (>100 km), possible triggering mechanisms for the expressions at the mesoscale-to-submesoscale may include spiraling tracers of inertial motion and the interaction of the wind-driven Ekman layer with the quasi-geostrophic current field. This latter, in turn, produces bands of downwelling (convergence) and upwelling (divergence) near fronts. A regular utilization of the sensor synergy approach with the combination of Sentinel-3 and Sentinel-1 will provide a highly valuable data set for further research and development to better relate the 2-dimensional surface expressions and the upper ocean dynamics.
Resumo:
In this paper we investigate the azimuthal pattern symmetry of an Archimedean spiral antenna which is designed to operate over the frequency range 3-10 GHz. The performance of the spiral in free space is compared with a structure that is backed by a perfect electric conductor with a separation distance of ?/4 at the operating frequencies. The latter arrangement exhibits a higher gain, however it is observed that the radiation patterns are less symmetrical about boresight and this performance degradation increases with frequency. The predicted 3 dB beamwidth difference is shown to vary between 14° (3 GHz) and 51° (10 GHz). An improved antenna design is described which reduces the pattern asymmetry to ˜ 2° at 10 GHz. The reduction in modal contamination is obtained by inserting slots carefully arranged in a radial pattern to disrupt the surface currents that flow on the ground plane of the antenna
Resumo:
Of the several physical processes occurring in the sea, vertical motions have special significance because of their marked effects on the oceanic environment. upwelling is the process in the sea whereby subsurface layers move up towards the surface. The reverse process of surface water sinking to subsurface depths is called sinking. Upwelling is a very conspicuous feature along the west coasts of continents and equatorial regions, though upwelling also occurs along certain east coasts of continents and other regions, The Thesis is an outcome of some investigations carried out by the author on upwelling and sinking off the west and east coasts of India. The aim of the study is to find out the actual period and duration of upwelling and sinking, their driving mechanism, various associated features and the factors that affect these processes. It is achieved by analysing the temperature and density fields off the west and east coasts of India, and further conclusions are drawn from the divergence field of surface currents, wind stress and sea level variations.
Resumo:
This thesis is the result of an elaborate study on the mixed layer depth (MLD) and the various oceanic environmental factors controlling it in the Arabian Sea examining its predictability on annual and short term basis. To accomplish this, the study area between 100 — 250 N latitudes and 600 — 750 E longitudes in the Arabian Sea is divided into 8 subareas of 50 quadrangles. The distribution of monthly means of the surface wind field, net heat exchange mKi868€%WTmN¥tWMWF3UH9 (SST) over each subarea in the annual cycle is examined. The corresponding wind (mechanical) and convective mixing values are computed and presented along with the observed mean MLD for the subareas in the annual cycle. Effects of advection due to surface currents and surface divergence (convergence and divergence) for these subareas are examined for correlating the MLD variations. A representative time series data from typical deep water station under southwest monsoonal forcing is analysed for the spectral components to estimate the amplitude perturbations on the mean MLD variation
Resumo:
The seasonal sea level variations observed from tide gauges over 1900-2013 and gridded satellite altimeter product AVISO over 1993-2013 in the northwest Pacific have been explored. The seasonal cycle is able to explain 60-90% of monthly sea level variance in the marginal seas, while it explains less than 20% of variance in the eddy-rich regions. The maximum annual and semi-annual sea level cycles (30cm and 6cm) are observed in the north of the East China Sea and the west of the South China Sea respectively. AVISO was found to underestimate the annual amplitude by 25% compared to tide gauge estimates along the coasts of China and Russia. The forcing for the seasonal sea level cycle was identified. The atmospheric pressure and the steric height produce 8-12cm of the annual cycle in the middle continental shelf and in the Kuroshio Current regions separately. The removal of the two attributors from total sea level permits to identify the sea level residuals that still show significant seasonality in the marginal seas. Both nearby wind stress and surface currents can explain well the long-term variability of the seasonal sea level cycle in the marginal seas and the tropics because of their influence on the sea level residuals. Interestingly, the surface currents are a better descriptor in the areas where the ocean currents are known to be strong. Here, they explain 50-90% of inter-annual variability due to the strong links between the steric height and the large-scale ocean currents.
Resumo:
Between 1995 and 2000, on average 4 eddies per year are observed from satellite altimetry to propagate southward through the Mozambique Channel, into the upstream Agulhas region. Further south, these eddies have been found to control the timing and frequenc yof Agulhas ring shedding. Within the Mozambique Channel, anomalous SSH amplitudes rise to 30 cm ; in agreement with in situ measured velocities. Comparison of an observed velocit ysection with GCM model results shows that the Mozambique Channel eddies in these models are too surface intensified. Also, the number of eddies formed in the models is in disagreement with our observational analysis. Moored current meter measurements observing the passage of three eddies in 2000 are extended to a 5-year time series b yreferencing the anomalous surface currents estimated from altimeter data to a s ynoptic LADCP velocit y measurement. The results show intermittent edd ypassage at the mooring location. A statistical analysis of SSH observations in different parts of the Mozambique Channel shows a southward decrease of the dominant frequency of the variability, going from 7 per year in the extension of the South Equatorial Current north of Madagascar to 4 per year south of Madagascar. The observations suggest that frequency reduction is related to the Rossb ywaves coming in from the east
Resumo:
This work presents a theoretical analysis and numerical and experimental results of the scattering characteristics of frequency selective surfaces, using elements of type patch perfectly conductor. The structures are composed of two frequency selective surfaces on isotropic dielectric substrates cascaded, separated by a layer of air. The analysis is performed using the method of equivalent transmission line in combination with the Galerkin method, to determine the transmission and reflection characteristics of the structures analyzed. Specifically, the analysis uses the impedance method, which models the structure by an equivalent circuit, and applies the theory of transmission lines to determine the dyadic Green's function for the cascade structure. This function relates the incident field and surface current densities. These fields are determined algebraically by means of potential incidents and the imposition of the continuity of the fields in the dielectric interfaces. The Galerkin method is applied to the numerical determination of the unknown weight coefficients and hence the unknown densities of surface currents, which are expanded in terms of known basis functions multiplied by these weight coefficients. From the determination of these functions, it becomes possible to obtain numerical scattered fields at the top and bottom of the structures and characteristics of transmission and reflection of these structures. At work, we present numerical and experimental results for the characteristics of transmission and reflection. Comparisons were made with other results presented in literature, and it was observed a good agreement in the cases presented suggestions continuity of the work are presented