985 resultados para distributed meta classifiers
Resumo:
BACKGROUND Endometriosis is a heritable common gynaecological condition influenced by multiple genetic and environmental factors. Genome-wide association studies (GWASs) have proved successful in identifying common genetic variants of moderate effects for various complex diseases. To date, eight GWAS and replication studies from multiple populations have been published on endometriosis. In this review, we investigate the consistency and heterogeneity of the results across all the studies and their implications for an improved understanding of the aetiology of the condition. METHODS Meta-analyses were conducted on four GWASs and four replication studies including a total of 11 506 cases and 32 678 controls, and on the subset of studies that investigated associations for revised American Fertility Society (rAFS) Stage III/IV including 2859 cases. The datasets included 9039 cases and 27 343 controls of European (Australia, Belgium, Italy, UK, USA) and 2467 cases and 5335 controls of Japanese ancestry. Fixed and Han and Elkin random-effects models, and heterogeneity statistics (Cochran's Q test), were used to investigate the evidence of the nine reported genome-wide significant loci across datasets and populations. RESULTS Meta-analysis showed that seven out of nine loci had consistent directions of effect across studies and populations, and six out of nine remained genome-wide significant (P < 5 × 10(-8)), including rs12700667 on 7p15.2 (P = 1.6 × 10(-9)), rs7521902 near WNT4 (P = 1.8 × 10(-15)), rs10859871 near VEZT (P = 4.7 × 10(-15)), rs1537377 near CDKN2B-AS1 (P = 1.5 × 10(-8)), rs7739264 near ID4 (P = 6.2 × 10(-10)) and rs13394619 in GREB1 (P = 4.5 × 10(-8)). In addition to the six loci, two showed borderline genome-wide significant associations with Stage III/IV endometriosis, including rs1250248 in FN1 (P = 8 × 10(-8)) and rs4141819 on 2p14 (P = 9.2 × 10(-8)). Two independent inter-genic loci, rs4141819 and rs6734792 on chromosome 2, showed significant evidence of heterogeneity across datasets (P < 0.005). Eight of the nine loci had stronger effect sizes among Stage III/IV cases, implying that they are likely to be implicated in the development of moderate to severe, or ovarian, disease. While three out of nine loci were inter-genic, the remaining were in or near genes with known functions of biological relevance to endometriosis, varying from roles in developmental pathways to cellular growth/carcinogenesis. CONCLUSIONS Our meta-analysis shows remarkable consistency in endometriosis GWAS results across studies, with little evidence of population-based heterogeneity. They also show that the phenotypic classifications used in GWAS to date have been limited. Stronger associations with Stage III/IV disease observed for most loci emphasize the importance for future studies to include detailed sub-phenotype information. Functional studies in relevant tissues are needed to understand the effect of the variants on downstream biological pathways.
Resumo:
Objective The aim of this systematic review and meta-analysis was to determine the overall effect of resistance training (RT) on measures of muscular strength in people with Parkinson’s disease (PD). Methods Controlled trials with parallel-group-design were identified from computerized literature searching and citation tracking performed until August 2014. Two reviewers independently screened for eligibility and assessed the quality of the studies using the Cochrane risk-of-bias-tool. For each study, mean differences (MD) or standardized mean differences (SMD) and 95% confidence intervals (CI) were calculated for continuous outcomes based on between-group comparisons using post-intervention data. Subgroup analysis was conducted based on differences in study design. Results Nine studies met the inclusion criteria; all had a moderate to high risk of bias. Pooled data showed that knee extension, knee flexion and leg press strength were significantly greater in PD patients who undertook RT compared to control groups with or without interventions. Subgroups were: RT vs. control-without-intervention, RT vs. control-with-intervention, RT-with-other-form-of-exercise vs. control-without-intervention, RT-with-other-form-of-exercise vs. control-with-intervention. Pooled subgroup analysis showed that RT combined with aerobic/balance/stretching exercise resulted in significantly greater knee extension, knee flexion and leg press strength compared with no-intervention. Compared to treadmill or balance exercise it resulted in greater knee flexion, but not knee extension or leg press strength. RT alone resulted in greater knee extension and flexion strength compared to stretching, but not in greater leg press strength compared to no-intervention. Discussion Overall, the current evidence suggests that exercise interventions that contain RT may be effective in improving muscular strength in people with PD compared with no exercise. However, depending on muscle group and/or training dose, RT may not be superior to other exercise types. Interventions which combine RT with other exercise may be most effective. Findings should be interpreted with caution due to the relatively high risk of bias of most studies.
Resumo:
Aims Elevated dynamic plantar pressures are a consistent finding in diabetes patients with peripheral neuropathy with implications for plantar foot ulceration. This meta-analysis aimed to compare the plantar pressures of diabetes patients that had peripheral neuropathy and those with neuropathy with active or previous foot ulcers. Methods Published articles were identified from Medline via OVID, CINAHL, SCOPUS, INFORMIT, Cochrane Central EMBASE via OVID and Web of Science via ISI Web of Knowledge bibliographic databases. Observational studies reporting barefoot dynamic plantar pressure in adults with diabetic peripheral neuropathy, where at least one group had a history of plantar foot ulcers were included. Interventional studies, shod plantar pressure studies and studies not published in English were excluded. Overall mean peak plantar pressure (MPP) and pressure time integral (PTI) were primary outcomes. The six secondary outcomes were MPP and PTI at the rear foot, mid foot and fore foot. The protocol of the meta-analysis was published with PROPSERO, (registration number CRD42013004310). Results Eight observational studies were included. Overall MPP and PTI were greater in diabetic peripheral neuropathy patients with foot ulceration compared to those without ulceration (standardised mean difference 0.551, 95% CI 0.290–0.811, p<0.001; and 0.762, 95% CI 0.303–1.221, p = 0.001, respectively). Sub-group analyses demonstrated no significant difference in MPP for those with neuropathy with active ulceration compared to those without ulcers. A significant difference in MPP was found for those with neuropathy with a past history of ulceration compared to those without ulcers; (0.467, 95% CI 0.181– 0.753, p = 0.001). Statistical heterogeneity between studies was moderate. Conclusions Plantar pressures appear to be significantly higher in patients with diabetic peripheral neuropathy with a history of foot ulceration compared to those with diabetic neuropathy without a history of ulceration. More homogenous data is needed to confirm these findings.
Resumo:
Elevated serum uric acid levels cause gout and are a risk factor for cardiovascular disease and diabetes. To investigate the polygenetic basis of serum uric acid levels, we conducted a meta-analysis of genome-wide association scans from 14 studies totalling 28,141 participants of European descent, resulting in identification of 954 SNPs distributed across nine loci that exceeded the threshold of genome-wide significance, five of which are novel. Overall, the common variants associated with serum uric acid levels fall in the following nine regions: SLC2A9 (p = 5.2x10(-201)), ABCG2 (p = 3.1x10(-26)), SLC17A1 (p = 3.0x10(-14)), SLC22A11 (p = 6.7x10(-14)), SLC22A12 (p = 2.0x10(-9)), SLC16A9 (p = 1.1x10(-8)), GCKR (p = 1.4x10(-9)), LRRC16A (p = 8.5x10(-9)), and near PDZK1 (p = 2.7x10(-9)). Identified variants were analyzed for gender differences. We found that the minor allele for rs734553 in SLC2A9 has greater influence in lowering uric acid levels in women and the minor allele of rs2231142 in ABCG2 elevates uric acid levels more strongly in men compared to women. To further characterize the identified variants, we analyzed their association with a panel of metabolites. rs12356193 within SLC16A9 was associated with DL-carnitine (p = 4.0x10(-26)) and propionyl-L-carnitine (p = 5.0x10(-8)) concentrations, which in turn were associated with serum UA levels (p = 1.4x10(-57) and p = 8.1x10(-54), respectively), forming a triangle between SNP, metabolites, and UA levels. Taken together, these associations highlight additional pathways that are important in the regulation of serum uric acid levels and point toward novel potential targets for pharmacological intervention to prevent or treat hyperuricemia. In addition, these findings strongly support the hypothesis that transport proteins are key in regulating serum uric acid levels.
Resumo:
Objective To quantify and compare the treatment effect and risk of bias of trials reporting biomarkers or intermediate outcomes (surrogate outcomes) versus trials using final patient relevant primary outcomes. Design Meta-epidemiological study. Data sources All randomised clinical trials published in 2005 and 2006 in six high impact medical journals: Annals of Internal Medicine, BMJ, Journal of the American Medical Association, Lancet, New England Journal of Medicine, and PLoS Medicine. Study selection Two independent reviewers selected trials. Data extraction Trial characteristics, risk of bias, and outcomes were recorded according to a predefined form. Two reviewers independently checked data extraction. The ratio of odds ratios was used to quantify the degree of difference in treatment effects between the trials using surrogate outcomes and those using patient relevant outcomes, also adjusted for trial characteristics. A ratio of odds ratios >1.0 implies that trials with surrogate outcomes report larger intervention effects than trials with patient relevant outcomes. Results 84 trials using surrogate outcomes and 101 using patient relevant outcomes were considered for analyses. Study characteristics of trials using surrogate outcomes and those using patient relevant outcomes were well balanced, except for median sample size (371 v 741) and single centre status (23% v 9%). Their risk of bias did not differ. Primary analysis showed trials reporting surrogate endpoints to have larger treatment effects (odds ratio 0.51, 95% confidence interval 0.42 to 0.60) than trials reporting patient relevant outcomes (0.76, 0.70 to 0.82), with an unadjusted ratio of odds ratios of 1.47 (1.07 to 2.01) and adjusted ratio of odds ratios of 1.46 (1.05 to 2.04). This result was consistent across sensitivity and secondary analyses. Conclusions Trials reporting surrogate primary outcomes are more likely to report larger treatment effects than trials reporting final patient relevant primary outcomes. This finding was not explained by differences in the risk of bias or characteristics of the two groups of trials.
Resumo:
Objective: To systematically review studies reporting the prevalence in general adult inpatient populations of foot disease disorders (foot wounds, foot infections, collective ‘foot disease’) and risk factors (peripheral arterial disease (PAD), peripheral neuropathy (PN), foot deformity). Methods: A systematic review of studies published between 1980 and 2013 was undertaken using electronic databases (MEDLINE, EMBASE and CINAHL). Keywords and synonyms relating to prevalence, inpatients, foot disease disorders and risk factors were used. Studies reporting foot disease or risk factor prevalence data in general inpatient populations were included. Included study's reference lists and citations were searched and experts consulted to identify additional relevant studies. 2 authors, blinded to each other, assessed the methodological quality of included studies. Applicable data were extracted by 1 author and checked by a second author. Prevalence proportions and SEs were calculated for all included studies. Pooled prevalence estimates were calculated using random-effects models where 3 eligible studies were available. Results: Of the 4972 studies initially identified, 78 studies reporting 84 different cohorts (total 60 231 517 participants) were included. Foot disease prevalence included: foot wounds 0.01–13.5% (70 cohorts), foot infections 0.05–6.4% (7 cohorts), collective foot disease 0.2–11.9% (12 cohorts). Risk factor prevalence included: PAD 0.01–36.0% (10 cohorts), PN 0.003–2.8% (6 cohorts), foot deformity was not reported. Pooled prevalence estimates were only able to be calculated for pressure ulcer-related foot wounds 4.6% (95% CI 3.7% to 5.4%)), diabetes-related foot wounds 2.4% (1.5% to 3.4%), diabetes-related foot infections 3.4% (0.2% to 6.5%), diabetes-related foot disease 4.7% (0.3% to 9.2%). Heterogeneity was high in all pooled estimates (I2=94.2–97.8%, p<0.001). Conclusions: This review found high heterogeneity, yet suggests foot disease was present in 1 in every 20 inpatients and a major risk factor in 1 in 3 inpatients. These findings are likely an underestimate and more robust studies are required to provide more precise estimates.
Resumo:
A principal hypothesis for the evolution of leks (rare and intensely competitive territorial aggregations) is that leks result from females preferring to mate with clustered males. This hypothesis predicts more female visits and higher mating success per male on larger leks. Evidence for and against this hypothesis has been presented by different studies, primarily of individual populations, but its generality has not yet been formally investigated. We took a meta-analytical approach towards formally examining the generality of such a female bias in lekking species. Using available published data and using female visits as an index of female mating bias, we estimated the shape of the relationship between lek size and total female visits to a lek, female visits per lekking male and, where available, per capita male mating success. Individual analyses showed that female visits generally increased with lek size across the majority of taxa surveyed; the meta-analysis indicated that this relationship with lek size was disproportionately positive. The findings from analysing per capita female visits were mixed, with an increase with lek size detected in half of the species, which were, however, widely distributed taxonomically. Taken together, these findings suggest that a female bias for clustered males may be a general process across lekking species. Nevertheless, the substantial variation seen in these relationships implies that other processes are also important. Analyses of per capita copulation success suggested that, more generally, increased per capita mating benefits may be an important selective factor in lek maintenance.
Resumo:
In this paper, we present a machine learning approach for subject independent human action recognition using depth camera, emphasizing the importance of depth in recognition of actions. The proposed approach uses the flow information of all 3 dimensions to classify an action. In our approach, we have obtained the 2-D optical flow and used it along with the depth image to obtain the depth flow (Z motion vectors). The obtained flow captures the dynamics of the actions in space time. Feature vectors are obtained by averaging the 3-D motion over a grid laid over the silhouette in a hierarchical fashion. These hierarchical fine to coarse windows capture the motion dynamics of the object at various scales. The extracted features are used to train a Meta-cognitive Radial Basis Function Network (McRBFN) that uses a Projection Based Learning (PBL) algorithm, referred to as PBL-McRBFN, henceforth. PBL-McRBFN begins with zero hidden neurons and builds the network based on the best human learning strategy, namely, self-regulated learning in a meta-cognitive environment. When a sample is used for learning, PBLMcRBFN uses the sample overlapping conditions, and a projection based learning algorithm to estimate the parameters of the network. The performance of PBL-McRBFN is compared to that of a Support Vector Machine (SVM) and Extreme Learning Machine (ELM) classifiers with representation of every person and action in the training and testing datasets. Performance study shows that PBL-McRBFN outperforms these classifiers in recognizing actions in 3-D. Further, a subject-independent study is conducted by leave-one-subject-out strategy and its generalization performance is tested. It is observed from the subject-independent study that McRBFN is capable of generalizing actions accurately. The performance of the proposed approach is benchmarked with Video Analytics Lab (VAL) dataset and Berkeley Multimodal Human Action Database (MHAD). (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we propose a H.264/AVC compressed domain human action recognition system with projection based metacognitive learning classifier (PBL-McRBFN). The features are extracted from the quantization parameters and the motion vectors of the compressed video stream for a time window and used as input to the classifier. Since compressed domain analysis is done with noisy, sparse compression parameters, it is a huge challenge to achieve performance comparable to pixel domain analysis. On the positive side, compressed domain allows rapid analysis of videos compared to pixel level analysis. The classification results are analyzed for different values of Group of Pictures (GOP) parameter, time window including full videos. The functional relationship between the features and action labels are established using PBL-McRBFN with a cognitive and meta-cognitive component. The cognitive component is a radial basis function, while the meta-cognitive component employs self-regulation to achieve better performance in subject independent action recognition task. The proposed approach is faster and shows comparable performance with respect to the state-of-the-art pixel domain counterparts. It employs partial decoding, which rules out the complexity of full decoding, and minimizes computational load and memory usage. This results in reduced hardware utilization and increased speed of classification. The results are compared with two benchmark datasets and show more than 90% accuracy using the PBL-McRBFN. The performance for various GOP parameters and group of frames are obtained with twenty random trials and compared with other well-known classifiers in machine learning literature. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Background: Human endogenous retroviruses (HERVs) are repetitive sequences derived from ancestral germ-line infections by exogenous retroviruses and different HERV families have been integrated in the genome. HERV-Fc1 in chromosome X has been previously associated with multiple sclerosis (MS) in Northern European populations. Additionally, HERV-Fc1 RNA levels of expression have been found increased in plasma of MS patients with active disease. Considering the North-South latitude gradient in MS prevalence, we aimed to evaluate the role of HERV-Fc1on MS risk in three independent Spanish cohorts. Methods: A single nucleotide polymorphism near HERV-Fc1, rs391745, was genotyped by Taqman chemistry in a total of 2473 MS patients and 3031 ethnically matched controls, consecutively recruited from: Northern (569 patients and 980 controls), Central (883 patients and 692 controls) and Southern (1021 patients and 1359 controls) Spain. Our results were pooled in a meta-analysis with previously published data. Results: Significant associations of the HERV-Fc1 polymorphism with MS were observed in two Spanish cohorts and the combined meta-analysis with previous data yielded a significant association [rs391745 C-allele carriers: p(M-H) = 0.0005; ORM-H (95% CI) = 1.27 (1.11-1.45)]. Concordantly to previous findings, when the analysis was restricted to relapsing remitting and secondary progressive MS samples, a slight enhancement in the strength of the association was observed [p(M-H) = 0.0003, ORM-H (95% CI) = 1.32 (1.14-1.53)]. Conclusion: Association of the HERV-Fc1 polymorphism rs391745 with bout-onset MS susceptibility was confirmed in Southern European cohorts.
Resumo:
134 p.
Resumo:
Intrinsic and extrinsic speaker normalization methods are systematically compared using a neural network (fuzzy ARTMAP) and L1 and L2 K-Nearest Neighbor (K-NN) categorizers trained and tested on disjoint sets of speakers of the Peterson-Barney vowel database. Intrinsic methods include one nonscaled, four psychophysical scales (bark, bark with endcorrection, mel, ERB), and three log scales, each tested on four combinations of F0 , F1, F2, F3. Extrinsic methods include four speaker adaptation schemes, each combined with the 32 intrinsic methods: centroid subtraction across all frequencies (CS), centroid subtraction for each frequency (CSi), linear scale (LS), and linear transformation (LT). ARTMAP and KNN show similar trends, with K-NN performing better, but requiring about ten times as much memory. The optimal intrinsic normalization method is bark scale, or bark with endcorrection, using the differences between all frequencies (Diff All). The order of performance for the extrinsic methods is LT, CSi, LS, and CS, with fuzzy ARTMAP performing best using bark scale with Diff All; and K-NN choosing psychophysical measures for all except CSi.
Resumo:
The scheduling problem in distributed data-intensive computing environments has become an active research topic due to the tremendous growth in grid and cloud computing environments. As an innovative distributed intelligent paradigm, swarm intelligence provides a novel approach to solving these potentially intractable problems. In this paper, we formulate the scheduling problem for work-flow applications with security constraints in distributed data-intensive computing environments and present a novel security constraint model. Several meta-heuristic adaptations to the particle swarm optimization algorithm are introduced to deal with the formulation of efficient schedules. A variable neighborhood particle swarm optimization algorithm is compared with a multi-start particle swarm optimization and multi-start genetic algorithm. Experimental results illustrate that population based meta-heuristics approaches usually provide a good balance between global exploration and local exploitation and their feasibility and effectiveness for scheduling work-flow applications. © 2010 Elsevier Inc. All rights reserved.
Resumo:
This paper describes a Multi-agent Scheduling System that assumes the existence of several Machines Agents (which are decision-making entities) distributed inside the Manufacturing System that interact and cooperate with other agents in order to obtain optimal or near-optimal global performances. Agents have to manage their internal behaviors and their relationships with other agents via cooperative negotiation in accordance with business policies defined by the user manager. Some Multi Agent Systems (MAS) organizational aspects are considered. An original Cooperation Mechanism for a Team-work based Architecture is proposed to address dynamic scheduling using Meta-Heuristics.
Resumo:
Context awareness, dynamic reconfiguration at runtime and heterogeneity are key characteristics of future distributed systems, particularly in ubiquitous and mobile computing scenarios. The main contributions of this dissertation are theoretical as well as architectural concepts facilitating information exchange and fusion in heterogeneous and dynamic distributed environments. Our main focus is on bridging the heterogeneity issues and, at the same time, considering uncertain, imprecise and unreliable sensor information in information fusion and reasoning approaches. A domain ontology is used to establish a common vocabulary for the exchanged information. We thereby explicitly support different representations for the same kind of information and provide Inter-Representation Operations that convert between them. Special account is taken of the conversion of associated meta-data that express uncertainty and impreciseness. The Unscented Transformation, for example, is applied to propagate Gaussian normal distributions across highly non-linear Inter-Representation Operations. Uncertain sensor information is fused using the Dempster-Shafer Theory of Evidence as it allows explicit modelling of partial and complete ignorance. We also show how to incorporate the Dempster-Shafer Theory of Evidence into probabilistic reasoning schemes such as Hidden Markov Models in order to be able to consider the uncertainty of sensor information when deriving high-level information from low-level data. For all these concepts we provide architectural support as a guideline for developers of innovative information exchange and fusion infrastructures that are particularly targeted at heterogeneous dynamic environments. Two case studies serve as proof of concept. The first case study focuses on heterogeneous autonomous robots that have to spontaneously form a cooperative team in order to achieve a common goal. The second case study is concerned with an approach for user activity recognition which serves as baseline for a context-aware adaptive application. Both case studies demonstrate the viability and strengths of the proposed solution and emphasize that the Dempster-Shafer Theory of Evidence should be preferred to pure probability theory in applications involving non-linear Inter-Representation Operations.