913 resultados para distributed computing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Field communication systems (fieldbuses) are widely used as the communication support for distributed computer-controlled systems (DCCS) within all sort of process control and manufacturing applications. There are several advantages in the use of fieldbuses as a replacement for the traditional point-to-point links between sensors/actuators and computer-based control systems, within which the most relevant is the decentralisation and distribution of the processing power over the field. A widely used fieldbus is the WorldFIP, which is normalised as European standard EN 50170. Using WorldFIP to support DCCS, an important issue is “how to guarantee the timing requirements of the real-time traffic?” WorldFIP has very interesting mechanisms to schedule data transfers, since it explicitly distinguishes periodic and aperiodic traffic. In this paper, we describe how WorldFIP handles these two types of traffic, and more importantly, we provide a comprehensive analysis on how to guarantee the timing requirements of the real-time traffic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Java language first came to public attention in 1995. Within a year, it was being speculated that Java may be a good language for parallel and distributed computing. Its core features, including being objected oriented and platform independence, as well as having built-in network support and threads, has encouraged this view. Today, Java is being used in almost every type of computer-based system, ranging from sensor networks to high performance computing platforms, and from enterprise applications through to complex research-based.simulations. In this paper the key features that make Java a good language for parallel and distributed computing are first discussed. Two Java-based middleware systems, namely MPJ Express, an MPI-like Java messaging system, and Tycho, a wide-area asynchronous messaging framework with an integrated virtual registry are then discussed. The paper concludes by highlighting the advantages of using Java as middleware to support distributed applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents two frameworks- a software framework and a hardware core manager framework- which, together, can be used to develop a processing platform using a distributed system of field-programmable gate array (FPGA) boards. The software framework providesusers with the ability to easily develop applications that exploit the processing power of FPGAs while the hardware core manager framework gives users the ability to configure and interact with multiple FPGA boards and/or hardware cores. This thesis describes the design and development of these frameworks and analyzes the performance of a system that was constructed using the frameworks. The performance analysis included measuring the effect of incorporating additional hardware components into the system and comparing the system to a software-only implementation. This work draws conclusions based on the provided results of the performance analysis and offers suggestions for future work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present BitWorker, a platform for community distributed computing based on BitTorrent. Any splittable task can be easily specified by a user in a meta-information task file, such that it can be downloaded and performed by other volunteers. Peers find each other using Distributed Hash Tables, download existing results, and compute missing ones. Unlike existing distributed computing schemes relying on centralized coordination point(s), our scheme is totally distributed, therefore, highly robust. We evaluate the performance of BitWorker using mathematical models and real tests, showing processing and robustness gains. BitWorker is available for download and use by the community.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adaptability for distributed object-oriented enterprise frameworks is a critical mission for system evolution. Today, building adaptive services is a complex task due to lack of adequate framework support in the distributed computing environment. In this thesis, we propose a Meta Level Component-Based Framework (MELC) which uses distributed computing design patterns as components to develop an adaptable pattern-oriented framework for distributed computing applications. We describe our novel approach of combining a meta architecture with a pattern-oriented framework, resulting in an adaptable framework which provides a mechanism to facilitate system evolution. The critical nature of distributed technologies requires frameworks to be adaptable. Our framework employs a meta architecture. It supports dynamic adaptation of feasible design decisions in the framework design space by specifying and coordinating meta-objects that represent various aspects within the distributed environment. The meta architecture in MELC framework can provide the adaptability for system evolution. This approach resolves the problem of dynamic adaptation in the framework, which is encountered in most distributed applications. The concept of using a meta architecture to produce an adaptable pattern-oriented framework for distributed computing applications is new and has not previously been explored in research. As the framework is adaptable, the proposed architecture of the pattern-oriented framework has the abilities to dynamically adapt new design patterns to address technical system issues in the domain of distributed computing and they can be woven together to shape the framework in future. We show how MELC can be used effectively to enable dynamic component integration and to separate system functionality from business functionality. We demonstrate how MELC provides an adaptable and dynamic run time environment using our system configuration and management utility. We also highlight how MELC will impose significant adaptability in system evolution through a prototype E-Bookshop application to assemble its business functions with distributed computing components at the meta level in MELC architecture. Our performance tests show that MELC does not entail prohibitive performance tradeoffs. The work to develop the MELC framework for distributed computing applications has emerged as a promising way to meet current and future challenges in the distributed environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adaptability for distributed object-oriented enterprise frameworks in multimedia technology is a critical mission for system evolution. Today, building adaptive services is a complex task due to lack of adequate framework support in the distributed computing systems. In this paper, we propose a Metalevel Component-Based Framework which uses distributed computing design patterns as components to develop an adaptable pattern-oriented framework for distributed computing applications. We describe our approach of combining a meta-architecture with a pattern-oriented framework, resulting in an adaptable framework which provides a mechanism to facilitate system evolution. This approach resolves the problem of dynamic adaptation in the framework, which is encountered in most distributed multimedia applications. The proposed architecture of the pattern-oriented framework has the abilities to dynamically adapt new design patterns to address issues in the domain of distributed computing and they can be woven together to shape the framework in future. © 2011 Springer Science+Business Media B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we evaluate and compare two representativeand popular distributed processing engines for large scalebig data analytics, Spark and graph based engine GraphLab. Wedesign a benchmark suite including representative algorithmsand datasets to compare the performances of the computingengines, from performance aspects of running time, memory andCPU usage, network and I/O overhead. The benchmark suite istested on both local computer cluster and virtual machines oncloud. By varying the number of computers and memory weexamine the scalability of the computing engines with increasingcomputing resources (such as CPU and memory). We also runcross-evaluation of generic and graph based analytic algorithmsover graph processing and generic platforms to identify thepotential performance degradation if only one processing engineis available. It is observed that both computing engines showgood scalability with increase of computing resources. WhileGraphLab largely outperforms Spark for graph algorithms, ithas close running time performance as Spark for non-graphalgorithms. Additionally the running time with Spark for graphalgorithms over cloud virtual machines is observed to increaseby almost 100% compared to over local computer clusters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed Computing frameworks belong to a class of programming models that allow developers to

launch workloads on large clusters of machines. Due to the dramatic increase in the volume of

data gathered by ubiquitous computing devices, data analytic workloads have become a common

case among distributed computing applications, making Data Science an entire field of

Computer Science. We argue that Data Scientist's concern lays in three main components: a dataset,

a sequence of operations they wish to apply on this dataset, and some constraint they may have

related to their work (performances, QoS, budget, etc). However, it is actually extremely

difficult, without domain expertise, to perform data science. One need to select the right amount

and type of resources, pick up a framework, and configure it. Also, users are often running their

application in shared environments, ruled by schedulers expecting them to specify precisely their resource

needs. Inherent to the distributed and concurrent nature of the cited frameworks, monitoring and

profiling are hard, high dimensional problems that block users from making the right

configuration choices and determining the right amount of resources they need. Paradoxically, the

system is gathering a large amount of monitoring data at runtime, which remains unused.

In the ideal abstraction we envision for data scientists, the system is adaptive, able to exploit

monitoring data to learn about workloads, and process user requests into a tailored execution

context. In this work, we study different techniques that have been used to make steps toward

such system awareness, and explore a new way to do so by implementing machine learning

techniques to recommend a specific subset of system configurations for Apache Spark applications.

Furthermore, we present an in depth study of Apache Spark executors configuration, which highlight

the complexity in choosing the best one for a given workload.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Distributed Denial of Services DDoS, attacks has become one of the biggest threats for resources over Internet. Purpose of these attacks is to make servers deny from providing services to legitimate users. These attacks are also used for occupying media bandwidth. Currently intrusion detection systems can just detect the attacks but cannot prevent / track the location of intruders. Some schemes also prevent the attacks by simply discarding attack packets, which saves victim from attack, but still network bandwidth is wasted. In our opinion, DDoS requires a distributed solution to save wastage of resources. The paper, presents a system that helps us not only in detecting such attacks but also helps in tracing and blocking (to save the bandwidth as well) the multiple intruders using Intelligent Software Agents. The system gives dynamic response and can be integrated with the existing network defense systems without disturbing existing Internet model. We have implemented an agent based networking monitoring system in this regard.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This special issue of the Journal of Urban Technology brings together five articles that are based on presentations given at the Street Computing workshop held on 24 November 2009 in Melbourne in conjunction with the Australian Computer-Human Interaction conference (OZCHI 2009). Our own article introduces the Street Computing vision and explores the potential, challenges and foundations of this research vision. In order to do so, we first look at the currently available sources of information and discuss their link to existing research efforts. Section 2 then introduces the notion of Street Computing and our research approach in more detail. Section 3 looks beyond the core concept itself and summarises related work in this field of interest.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A distributed fuzzy system is a real-time fuzzy system in which the input, output and computation may be located on different networked computing nodes. The ability for a distributed software application, such as a distributed fuzzy system, to adapt to changes in the computing network at runtime can provide real-time performance improvement and fault-tolerance. This paper introduces an Adaptable Mobile Component Framework (AMCF) that provides a distributed dataflow-based platform with a fine-grained level of runtime reconfigurability. The execution location of small fragments (possibly as little as few machine-code instructions) of an AMCF application can be moved between different computing nodes at runtime. A case study is included that demonstrates the applicability of the AMCF to a distributed fuzzy system scenario involving multiple physical agents (such as autonomous robots). Using the AMCF, fuzzy systems can now be developed such that they can be distributed automatically across multiple computing nodes and are adaptable to runtime changes in the networked computing environment. This provides the opportunity to improve the performance of fuzzy systems deployed in scenarios where the computing environment is resource-constrained and volatile, such as multiple autonomous robots, smart environments and sensor networks.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A composite SaaS (Software as a Service) is a software that is comprised of several software components and data components. The composite SaaS placement problem is to determine where each of the components should be deployed in a cloud computing environment such that the performance of the composite SaaS is optimal. From the computational point of view, the composite SaaS placement problem is a large-scale combinatorial optimization problem. Thus, an Iterative Cooperative Co-evolutionary Genetic Algorithm (ICCGA) was proposed. The ICCGA can find reasonable quality of solutions. However, its computation time is noticeably slow. Aiming at improving the computation time, we propose an unsynchronized Parallel Cooperative Co-evolutionary Genetic Algorithm (PCCGA) in this paper. Experimental results have shown that the PCCGA not only has quicker computation time, but also generates better quality of solutions than the ICCGA.