989 resultados para dissociative electron attachment
Resumo:
A comprehensive analysis of metastable dissociation of 2, 4-dinitrotoluene (DNT) parent anions formed by attachment of electrons of controlled energy is presented. We characterize the energy dependence and kinetic energy release of the reaction which competes with autodetachment. A surprising finding is a highly exothermic metastable reaction triggered by the attachment of thermal electrons which we relate to the well-known electrostatic ignition hazards of DNT and other explosives. Quantum chemical calculations are performed for dinitrobenzene in order to elucidate the process of NO abstraction.
Resumo:
Electron attachment to NCCCCN, dicyanoacetylene (2-butynedinitrile), has been observed. Metastable parent anions, NCCCCN-*, with microsecond or longer lifetimes are formed close to 0 eV electron energy with a cross section of >= 0.25 angstrom(2). The stability of NCCCCN suggests that radiative attachment to NCCCCN and similar linear carbon chain molecules may be an important mechanism for the formation of negatively charged molecular ions in astrophysical environments. CCCN- and CN- fragment anions are formed at similar to 3 and similar to 6 eV.
Resumo:
Results from a joint experimental and theoretical study of electron attachment to chloroform (CHCl3) molecules in the gas phase are reported. In an electron swarm study involving a pulsed Townsend technique with equal gas and electron temperatures, accurate attachment rate coefficients were determined over the temperature range 295-373 K; they show an Arrhenius-type rise with increasing temperature, corresponding to an activation energy of 0.11 (1) eV. In a high resolution electron beam experiment involving two versions of the laser photoelectron attachment method, the relative cross section for Cl- formation from CHCl3 over the energy range 0.001-1.25 eV at the gas temperature T-G = 300 K was measured. It exhibits clear downward cusp structure at the threshold for excitation of one quantum of the vibrational symmetric deformation mode nu(3), indicating that this mode is active in the primary attachment process. With reference to our thermal attachment rate coefficient k(T = 300 K) = 3.9(2) x 10(-9) cm(3) s(-1), a new highly resolved absolute attachment cross section for T-G = 300 K was determined. This cross section is extended to higher energies by measurements, carried out with a pulsed electron beam apparatus which also provided new data for the distinctly weaker fragment anions HCl2- and CCl2-. The resulting total absolute cross section for anion formation is used to calculate the dependence of the attachment rate coefficient k(T-e;T-G) on electron temperature T-e over the range 50-15000 K at the fixed gas temperature T-G = 300 K. In addition, we report the dependence of the relative cross section for Cl- formation on gas temperature T-G = 310-435 K). For comparison with the experimental data, R-matrix calculations have been carried out for the dominant anion channel Cl-. The results recover the main experimental observations and predict the dependence of the DEA cross section on the initial vibrational level nu(3) and on the vibrational temperature. Our results are compared with those of previous electron beam and electron swarm experiments.
Resumo:
We study the process of low-energy electron capture by the SF(6) molecule. Our approach is based on the model of Gauyacq and Herzenberg [J. P. Gauyacq and A. Herzenberg, J. Phys. B 17, 1155 (1984)] in which the electron motion is coupled to the fully symmetric vibrational mode through a weakly bound or virtual s state. By tuning the two free parameters of the model, we achieve an accurate description of the measured electron attachment cross section and good agreement with vibrational excitation cross sections of the fully symmetric mode. An extension of the model provides a limit on the characteristic time of intramolecular vibrational relaxation in highly excited SF(6)(-). By evaluating the total vibrational spectrum density of SF(6)(-), we estimate the widths of the vibrational Feshbach resonances of the long-lived negative ion. We also analyze the possible distribution of the widths and its effect on the lifetime measurements, and investigate nonexponential decay features in metastable SF(6)(-).
Resumo:
Electron attachment to nitroaromatic compound 2-nitro-m-xylene in gas phase has been performed utilizing a double focusing two sector mass spectrometer with high mass resolution (m/Delta m approximate to 2500). At low energy (below 20 eV), electron interactions with the neutral 2-nitro-m-xylene molecule reveal a very rich fragmentation pattern. A total of 60 fragment anions have been detected and the ion yield for all observed negative ions has been recorded as a function of the incident electron energy, among them a long lived (metastable) non-dissociated parent anion which is formed at energies near zero eV, and some ions observed at the mass numbers 26,42 and 121. Comparison of calculated isotopic patterns with measured ion yields for these fragment anions and their successors in the mass spectrum, allows the assignment of the chemical composition of these fragments as CN- (26 Da), CNO- (42 Da) and C8H9O- (121 Da). Electron attachment to 2-nitro-m-xylene leads to anion formation at four energy ranges. Between 0 eV and 2 eV only few product ions are formed. Between 4.6 eV and 6.1 eV all fragment anions are formed and for most of them the anion yield reaches its maximum value in this range. NO2- which is the most abundant product [M-H](-) and O- are the only fragments that exhibit a feature at 7.4eV, 8.1 eV and 7.9eV, respectively. About half of the fragment anions exhibit a broad, mostly low-intensity resonance between 9 eV and 10 eV. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Results from a joint experimental study of electron attachment to dichlorodifluoromethane (CCl2F2) molecules in the gas phase are reported. In a high resolution electron beam experiment involving two versions of the laser photoelectron attachment method, the relative cross section for formation of the dominant anion Cl- wits measured over the energy range 0.001-1.8 eV at the gas temperature T-G = 300 K. It exhibits cusp structure at thresholds for vibrational excitation of the v(3)(a(1)) mode due to interaction with the attachment channels. With reference to the thermal attachment rate coefficient k(T-e;T-G = 300 K) = 2.2(8) x 10(-9) cm(-3) s(-1) (fitted average from several data), a new highly resolved absolute attachment cross section for TG = 300 K was determined. Partial cross sections for formation of the anions Cl-, Cl-2(-), F-, ClF-, and CCl2F- were measured over the range 0-12 eV, using three different electron beam experiments of medium energy resolution. The dependence of the attachment rate coefficient k(T-e;T-G = 300 K) on electron temperature T-e wits calculated over the range 50-15 000 K, based on a newly constructed total cross section for anion formation at T-G = 300 K. R-matrix Calculations for Cl- production have been carried out for comparison with the experimental data. The R-matrix results are in line with the main experimental observations and predict the dependence of the DEA cross section on the initial vibrational level v(3) and on the vibrational temperature. Furthermore, the cross section for I Vibrational excitation of the v(3) mode hits been computed.
Resumo:
Attachment of free, low-energy electrons to dinitrobenzene (DNB) in the gas phase leads to DNB as well as several fragment anions. DNB, (DNB-H), (DNB-NO), (DNB-2NO), and (DNB-NO2) are found to undergo metastable (unimolecular) dissociation. A rich pattern of resonances in the yield of these metastable reactions versus electron energy is observed; some resonances are highly isomer-specific. Most metastable reactions are accompanied by large average kinetic energy releases (KER) that range from 0.5 to 1.32 eV, typical of complex rearrangement reactions, but (1,3-DNB-H)(-) features a resonance with a KER of only 0.06 eV for loss of NO. (1,3-DNB-NO)(-) offers a rare example of a sequential metastable reaction, namely, loss of NO followed by loss of CO to yield C5H4O- with a large KER of 1.32 eV. The G4(MP2) method is applied to compute adiabatic electron affinities and reaction energies for several of the observed metastable channels. (C) 2010 American Institute of Physics. [doi:10.1063/1.3514931]
Resumo:
Low-energy electron-impact hydrogen loss due to dissociative electron attachment (DEA) to the uracil and thymine molecules in a water cluster environment is investigated theoretically. Only the A'-resonance contribution, describing the near-threshold behavior of DEA, is incorporated. Calculations are based on the nonlocal complex potential theory and the multiple scattering theory, and are performed for a model target with basic properties of uracil and thymine, surrounded by five water molecules. The DEA cross section is strongly enhanced when the attaching molecule is embedded in a water cluster. This growth is due to two effects: the increase of the resonance lifetime and the negative shift in the resonance position due to interaction of the intermediate negative ion with the surrounding water molecules. A similar effect was earlier found in DEA to chlorofluorocarbons.
Resumo:
Electron impact ionization of dinitrogen pentoxide for incident electron energies up to about 25 eV has been investigated by use of a crossed beams quadrupole mass spectrometer system. The experiments reported in this paper detected the fragmentation products NO2+, NO+, O+, N+, and NO3+. No stable N2O5+ ion was observed. The NO3+ fragment, for which we determine an appearance energy 13.25 +/- 0.30 ev, has not been observed previously. This appearance energy is close to the calculated threshold.
Resumo:
We report cross sections for elastic electron scattering by gas phase glycine (neutral form), obtained with the Schwinger multichannel method. The present results are the first obtained with a new implementation that combines parallelization with OpenMP directives and pseudopotentials. The position of the well known pi* shape resonance ranged from 2.3 eV to 2.8 eV depending on the polarization model and conformer. For the most stable isomer, the present result (2.4 eV) is in fair agreement with electron transmission spectroscopy assignments (1.93 +/- 0.05 eV) and available calculations. Our results also point out a shape resonance around 9.5 eV in the A' symmetry that would be weakly coupled to vibrations of the hydroxyl group. Since electron attachment to a broad and lower lying sigma* orbital located on the OH bond has been suggested the underlying mechanism leading to dissociative electron attachment at low energies, we sought for a shape resonance around similar to 4 eV. Though we obtained cross sections with the target molecule at the equilibrium geometry and with stretched OH bond lengths, least-squares fits to the calculated eigenphase sums did not point out signatures of this anion state (though, in principle, it could be hidden in the large background). The low energy (similar to 1 eV) integral cross section strongly scales as the bond length is stretched, and this could indicate a virtual state pole, since dipole supported bound states are not expected at the geometries addressed here. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3687345]
Resumo:
Reactions initiated by collisions with low-energy secondary electrons has been found to be the prominent mechanism toward the radiation damage on living tissues through DNA strand breaks. Now it is widely accepted that during the interaction with these secondary species the selective breaking of chemical bonds is triggered by dissociative electron attachment (DEA), that is, the capture of the incident electron and the formation of temporary negative ion states [1,2,3]. One of the approaches largely used toward a deeper understanding of the radiation damage to DNA is through modeling of DEA with its basic constituents (nucleotide bases, sugar and other subunits). We have tried to simplify this approach and attempt to make it comprehensible at a more fundamental level by looking at even simple molecules. Studies involving organic systems such as carboxylic acids, alcohols and simple ¯ve-membered heterocyclic compounds are taken as starting points for these understanding. In the present study we investigate the role played by elastic scattering and electronic excitation of molecules on electron-driven chemical processes. Special attention is focused on the analysis of the in°uence of polarization and multichannel coupling e®ects on the magnitude of elastic and electronically inelastic cross-sections. Our aim is also to investigate the existence of resonances in the elastic and electronically inelastic channels as well as to characterize them with respect to its type (shape, core-excited or Feshbach), symmetry and position. The relevance of these issues is evaluated within the context of possible applications for the modeling of discharge environments and implications in the understanding of mutagenic rupture of DNA chains. The scattering calculations were carried out with the Schwinger multichannel method (SMC) [4] and its implementation with pseudopotentials (SMCPP) [5] at di®erent levels of approximation for impact energies ranging from 0.5 eV to 30 eV. References [1] B. Boudai®a, P. Cloutier, D. Hunting, M. A. Huels and L. Sanche, Science 287, 1658 (2000). [2] X. Pan, P. Cloutier, D. Hunting and L. Sanche, Phys. Rev. Lett. 90, 208102 (2003). [3] F. Martin, P. D. Burrow, Z. Cai, P. Cloutier, D. Hunting and L. Sanche, Phys. Rev. Lett. 93, 068101 (2004). [4] K. Takatsuka and V. McKoy, Phys. Rev. A 24, 2437 (1981); ibid. Phys. Rev. A 30, 1734 (1984). [5] M. H. F. Bettega, L. G. Ferreira and M. A. P. Lima, Phys. Rev. A 47, 1111 (1993).