980 resultados para dissipative structures
Resumo:
Resumen: Este texto explora el sentido y la posibilidad de introducir la teoría de Ilya Prigogine “estructuras disipativas” en el contexto de las organizaciones. La tesis aquí propuesta afirma que las organizaciones son sistemas abiertos, alejados del equilibrio y tiene que ver con posibilidades creativas, antes que con realidades fácticas. Por lo tanto, las organizaciones de no-equilibrio están constituidas por fenómenos de comportamientos espontáneos o coherentes que reclaman para sobrevivir cierta disipación de energía y, por tanto, el mantenimiento de una interacción con el mundo exterior. Con ello la gerencia adquiere un papel destacado en el estudio de las organizaciones como estructuras disipativas encaminadas a generar y permitir el Biodesarrollo. Palabras claves: Estructuras Disipativas, Fluctuaciones, Bifurcaciones, Gerencia, Biodesarrollo, Auto-eco-organizador. Abstract: This text explores the sense and possibility of introducing Ilya Prigogine´s theory “dissipative structures”, into organizations´ context. The thesis proposed here states that organizations are open systems which are far away from equilibrium and had to deal with creative possibilities before being practical realities. Thus, no-equilibrium organizations are made of spontaneous or coherent behavioral phenomenon that strives to survive a certain amount of energy loss, hence the maintenance of interaction with external world. This way organizations management acquires an outstanding roll in studying organizations as dissipative structures prone to create and allow bio-development.Key Words: Dissipative Structures, Fluctuation, Bifurcation, Management, Bio-development, eco-self-organizer.
Resumo:
We study compressible magnetohydrodynamic turbulence, which holds the key to many astrophysical processes, including star formation and cosmic-ray propagation. To account for the variations of the magnetic field in the strongly turbulent fluid, we use wavelet decomposition of the turbulent velocity field into Alfven, slow, and fast modes, which presents an extension of the Cho & Lazarian decomposition approach based on Fourier transforms. The wavelets allow us to follow the variations of the local direction of the magnetic field and therefore improve the quality of the decomposition compared to the Fourier transforms, which are done in the mean field reference frame. For each resulting component, we calculate the spectra and two-point statistics such as longitudinal and transverse structure functions as well as higher order intermittency statistics. In addition, we perform a Helmholtz-Hodge decomposition of the velocity field into incompressible and compressible parts and analyze these components. We find that the turbulence intermittency is different for different components, and we show that the intermittency statistics depend on whether the phenomenon was studied in the global reference frame related to the mean magnetic field or in the frame defined by the local magnetic field. The dependencies of the measures we obtained are different for different components of the velocity; for instance, we show that while the Alfven mode intermittency changes marginally with the Mach number, the intermittency of the fast mode is substantially affected by the change.
Resumo:
We know that classical thermodynamics even out of equilibrium always leads to stable situation which means degradation and consequently d sorder. Many experimental evidences in different fields show that gradation and order (symmetry breaking) during time and space evolution may appear when maintaining the system far from equilibrium. Order through fluctuations, stochastic processes which occur around critical points and dissipative structures are the fundamental background of the Prigogine-Glansdorff and Nicolis theory. The thermodynamics of macroscopic fluctuations to stochastic approach as well as the kinetic deterministic laws allow a better understanding of the peculiar fascinating behavior of organized matter. The reason for the occurence of this situation is directly related to intrinsic non linearities of the different mechanisms responsible for the evolution of the system. Moreover, when dealing with interfaces separating two immiscible phases (liquid - gas, liquid -liquid, liquid - solid, solid - solid), the situation is rather more complicated. Indeed coupling terms playing the major role in the conditions of instability arise from the peculiar singular static and dynamic properties of the surface and of its vicinity. In other words, the non linearities are not only intrinsic to classical steps involving feedbacks, but they may be imbedded with the non-autonomous character of the surface properties. In order to illustrate our goal we discuss three examples of ordering in far from equilibrium conditions: i) formation of chemical structures during the oxidation of metals and alloys; ii) formation of mechanical structures during the oxidation of metals iii) formation of patterns at a solid-liquid moving interface due to supercooling condition in a melt of alloy. © 1984, Walter de Gruyter. All rights reserved.
Resumo:
We present a solitary solution of the three-wave nonlinear partial differential equation (PDE) model - governing resonant space-time stimulated Brillouin or Raman backscattering - in the presence of a cw pump and dissipative material and Stokes waves. The study is motivated by pulse formation in optical fiber experiments. As a result of the instability any initial bounded Stokes signal is amplified and evolves to a subluminous backscattered Stokes pulse whose shape and velocity are uniquely determined by the damping coefficients and the cw-pump level. This asymptotically stable solitary three-wave structure is an attractor for any initial conditions in a compact support, in contrast to the known superluminous dissipative soliton solution which calls for an unbounded support. The linear asymptotic theory based on the Kolmogorov-Petrovskii-Piskunov assertion allows us to determine analytically the wave-front slope and the subluminous velocity, which are in remarkable agreement with the numerical computation of the nonlinear PDE model when the dynamics attains the asymptotic steady regime. © 1997 The American Physical Society.
Resumo:
Viscous dampers are characterized as very effective devices applied for seismic design and retrofitting. The objective of this thesis is to apply the Five-Step Procedure ,developed by a research group in University of Bologna, for sizing the viscous dampers to be installed in an existing precast RC structure. The idea is to apply the viscous damping devices in different positions in the structure then to identify and compare the performance of all types placement position.
Resumo:
Fractal structures appear in many situations related to the dynamics of conservative as well as dissipative dynamical systems, being a manifestation of chaotic behaviour. In open area-preserving discrete dynamical systems we can find fractal structures in the form of fractal boundaries, associated to escape basins, and even possessing the more general property of Wada. Such systems appear in certain applications in plasma physics, like the magnetic field line behaviour in tokamaks with ergodic limiters. The main purpose of this paper is to show how such fractal structures have observable consequences in terms of the transport properties in the plasma edge of tokamaks, some of which have been experimentally verified. We emphasize the role of the fractal structures in the understanding of mesoscale phenomena in plasmas, such as electromagnetic turbulence.
Resumo:
Computer experiments of interstellar cloud collisions were performed with a new smoothed-particle-hydrodynamics (SPH) code. The SPH quantities were calculated by using spatially adaptive smoothing lengths and the SPH fluid equations of motion were solved by means of a hierarchical multiple time-scale leapfrog. Such a combination of methods allows the code to deal with a large range of hydrodynamic quantities. A careful treatment of gas cooling by H, H(2), CO and H II, as well as a heating mechanism by cosmic rays and by H(2) production on grains surface, were also included in the code. The gas model reproduces approximately the typical environment of dark molecular clouds. The experiments were performed by impinging two dynamically identical spherical clouds onto each other with a relative velocity of 10 km s(-1) but with a different impact parameter for each case. Each object has an initial density profile obeying an r(-1)-law with a cutoff radius of 10 pc and with an initial temperature of 20 K. As a main result, cloud-cloud collision triggers fragmentation but in expense of a large amount of energy dissipated, which occurred in the head-on case only. Off-center collision did not allow remnants to fragment along the considered time (similar to 6 Myr). However, it dissipated a considerable amount of orbital energy. Structures as small as 0.1 pc, with densities of similar to 10(4) cm(-3), were observed in the more energetic collision.
Resumo:
Some dynamical properties for a dissipative kicked rotator are studied. Our results show that when dissipation is taken into account a drastic change happens in the structure of the phase space in the sense that the mixed structure is modified and attracting fixed points and chaotic attractors are observed. A detailed numerical investigation in a two-dimensional parameter space based on the behavior of the Lyapunov exponent is considered. Our results show the existence of infinite self-similar shrimp-shaped structures corresponding to periodic attractors, embedded in a large region corresponding to the chaotic regime. (C) 2011 American Institute of Physics. [doi:10.1063/1.3657917]
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Some dynamical properties for a bouncing ball model are studied. We show that when dissipation is introduced the structure of the phase space is changed and attractors appear. Increasing the amount of dissipation, the edges of the basins of attraction of an attracting fixed point touch the chaotic attractor. Consequently the chaotic attractor and its basin of attraction are destroyed given place to a transient described by a power law with exponent -2. The parameter-space is also studied and we show that it presents a rich structure with infinite self-similar structures of shrimp-shape. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
La leçon s'addresse à la comprehension du comportement des bâtiments soumis à l'accéleration séismique, et présente une introduction au comportement dynamique de oscillateurs (un ou plusieurs dégrés de liberté), du comportément hystérétique des structures (selon modes de dissipation) et aux paramètres séismiques relevants à la conception parasismique, notamment aux spectres de réponse et de démande, et sa relation avec la capacité de la structure (courbe de capacité) où on peut identifier les niveaux de dommage -ou les critères de performance- pour des intensités séismique prévues au projet. Elle considère aussi les méthodes de définition et détermination de la vulnérabilité, façe aux séismes, des différentes typologies constructives, avec l'inclusion finale des typologies pour les sistèmes de contreventement et recomandations visées à éviter aux mêmes la concentration de dommage d'origine séismique. Lecture's goal focuses in the understanding of the behaviour of buildings under seismic excitation. It presents an introduction of dynamics (single or multiple degrees of freedom oscillators) and the hysteretic behaviour of ductile structures, introducing the seismic parameters relevant to the structural design, mostly in the context of response and demand spectra and their relations with capacity curves of structures. On the capacity curve obtained in pushover analysis, points representing the design objectives in terms of performance levels can be identified and related with seismic demand. Lecture deals also with methods on vulnerability analysis for building construction typologies and the behaviour (and related recommendations) of seismic resistant structural typologies, having the distribution of dissipative energy and damage in mind.