977 resultados para display technics
Resumo:
The fruit of banana undergoes several important physico-chemical changes during ripening. Analysis of gene expression would permit identification of important genes and regulatory elements involved in this process. Therefore, transcript profiling of preclimacteric and climacteric fruit was performed using differential display and Suppression subtractive hybridization. Our analyses resulted in the isolation of 12 differentially expressed cDNAs, which were confirmed by dot-blots and northern blots. Among the sequences identified were sequences homologous to plant aquaporins, adenine nucleotide translocator, immunophilin, legumin-like proteins, deoxyguanosine kinase and omega-3 fatty acid desaturase. Some of these cDNAs correspond to newly isolated genes involved in changes related to the respiratory climacteric, or stress-defense responses. Functional characterization of ripening-associated genes could provide information useful in controlling biochemical pathways that would have an impact on banana quality and shelf life. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The human blood fluke Schistosoma mansoni is the primary cause of schistosomiasis, a debilitating disease that affects 200 million individuals in over 70 countries. The biogenic amine serotonin is essential for the survival of the parasite and serotonergic proteins are potential novel drug targets for treating schistosomiasis. Here we characterize two novel serotonin transporter gene transcripts, SmSERT-A and SmSERT-B, from S. mansoni. Southern blot analysis shows that the two mRNAs are the products of different alleles of a single SmSERT gene locus. The two SmSERT forms differ in three amino acid positions near the N-terminus of the protein. Both SmSERTs are expressed in the adult form and in the sporocyst form (infected snails) of the parasite, but are absent from all other stages of the parasite`s complex life cycle. Heterologous expression of the two cDNAs in mammalian cells resulted in saturable, sodium-dependent serotonin transport activity with an apparent affinity for serotonin comparable to that of the human serotonin transporter. Although the two SmSERTs are pharmacologically indistinguishable from each other, efflux experiments reveal notably higher substrate selectivity for serotonin compared with their mammalian counterparts. Several well-established substrates for human SERT including (+/-)MDMA, S-(+)amphetamine, RU 24969, and m-CPP are not transported by SmSERTs, underscoring the higher selectivity of the schistosomal isoforms. Voltage-clamp recordings of SmSERT substrate-elicited currents confirm the substrate selectivity observed in efflux experiments and suggest that it may be possible to exploit the electrogenic nature of SmSERT to screen for compounds that target the parasite in vivo. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Plants have multiple potassium (K+) uptake and efflux mechanisms that are expressed throughout plant tissues to fulfill different physiological functions. Several different classes of K+ channels and carriers have been identified at the molecular level in plants. K+ transporters of the HKT1 superfamily have been cloned from wheat (Triticum aestivum), Arabidopsis, and Eucalyptus camaldulensis. The functional characteristics as well as the primary structure of these transporters are diverse with orthologues found in bacterial and fungal genomes. In this report, we provide a detailed characterization of the functional characteristics, as expressed in Xenopus laevis oocytes, of two cDNAs isolated from E. camaldulensis that encode proteins belonging to the HKT1 superfamily of K+/Na+ transporters. The transport of K+ in EcHKT-expressing oocytes is enhanced by Na+, but K+ was also transported in the absence of Na+. Na+ is transported in the absence of K+ as has been demonstrated for HKT1 and AtHKT1. Overall, the E. camaldulensis transporters show some similarities and differences in ionic selectivity to HKT1 and AtHKT1. One striking difference between HKT1 and EcHKT is the sensitivity to changes in the external osmolarity of the solution. Hypotonic solutions increased EcHKT induced currents in oocytes by 100% as compared with no increased current in HKT1 expressing or uninjected oocytes. These osmotically sensitive currents were not enhanced by voltage and may mediate water flux. The physiological function of these osmotically induced increases in currents may be related to the ecological niches that E. camaldulensis inhabits, which are periodically flooded. Therefore, the osmosensing function of EcHKT may provide this species with a competitive advantage in maintaining K+ homeostasis under certain conditions.
Resumo:
Several cystic fibrosis (CF) mouse models demonstrate an increased susceptibility to Pseudomonas aeruginosa lung infection, characterized by excessive inflammation and high rates of mortality. Here we developed a model of chronic P. aeruginosa lung disease in mice homozygous for the murine CF transmembrane conductance regulator G551D mutation that provides an excellent model for CF lung disease. After 3 days of infection with mucoid P. aeruginosa entrapped in agar beads, the G551D animals lost substantially more body weight than non-CF control animals and were less able to control the infection, harboring over 40-fold more bacteria in the lung. The airways of infected G551D animals contained altered concentrations of the inflammatory mediators tumor necrosis factor-alpha, KC/N51, and macrophage inflammatory protein-2 during the first 2 days of infection, suggesting that an ineffective inflammatory response is partly responsible for the clearance defect.
Resumo:
Antibodies have the potential to be therapeutic reagents for malaria. Here we describe the production of a novel phage antibody display library against the C-terminal 19 kDa region of the Plasmodium yoelii YM merozoite surface protein-1 (MSP1(19)). In vivo studies against homologous lethal malaria challenge show an anti-parasite effect in a dose dependent manner, and analysis by plasmon resonance indicates binding to the antigen is comparable to the binding of a protective monoclonal antibody. The data support the lack of a need for any antibody Fc-related function and hold great significance for the development of a therapeutic reagent for malaria. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Adult B-cell acute lymphoblastic leukemia remains a major therapeutic challenge, requiring a better characterization of the molecular determinants underlying disease progression and resistance to treatment. Here, using a phospho-flow cytometry approach we show that adult diagnostic B-cell acute lymphoblastic leukemia specimens display PI3K/Akt pathway hyperactivation, irrespective of their BCR-ABL status and despite paradoxically high basal expression of PTEN, the major negative regulator of the pathway. Protein kinase CK2 is known to phosphorylate PTEN thereby driving PTEN protein stabilization and concomitant PTEN functional inactivation. In agreement, we found that adult B-cell acute lymphoblastic leukemia samples show significantly higher CK2 kinase activity and lower PTEN lipid phosphatase activity than healthy controls. Moreover, the clinical-grade CK2 inhibitor CX-4945 (Silmitasertib) reversed PTEN levels in leukemia cells to those observed in healthy controls, and promoted leukemia cell death without significantly affecting normal bone marrow cells. Our studies indicate that CK2-mediated PTEN posttranslational inactivation, associated with PI3K/Akt pathway hyperactivation, are a common event in adult B-cell acute lymphoblastic leukemia and suggest that CK2 inhibition may constitute a valid, novel therapeutic tool in this malignancy.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Física
Resumo:
Phage display technology is a powerful platform for the generation of highly specific human monoclonal antibodies (Abs) with potential use in clinical applications. Moreover, this technique has also proven to be a reliable approach in identifying and validating new cancer-related targets. For scientific or medical applications, different types of Ab libraries can be constructed. The use of Fab Immune libraries allows the production of high quality and affinity antigen-specific Abs. In this work, two immune human phage display IgG Fab libraries were generated from the Ab repertoire of 16 breast cancer patients, in order to obtain a tool for the development of new therapeutic Abs for breast cancer, a condition that has great impact worldwide. The generated libraries are estimated to contain more than 108 independent clones and a diversity over 90%. Libraries validation was pursued by selection against BSA, a foreign and highly immunogenic protein, and HER2, a well established cancer target. Preliminary results suggested that phage pools with affinity for these antigens were selected and enriched. Individual clones were isolated, however, it was not possible to obtain enough data to further characterize them. Selection against the DLL1 protein was also performed, once it is a known ligand of the Notch pathway, whose deregulation is associated to breast cancer, making it an interesting target for the generation of function-blocking Abs. Selection resulted in the isolation of a clone with low affinity and Fab expression levels. The validation process was not completed and further effort will have to be put in this task in the future. Although immune libraries concept implies limited applicability, the library reported here has a wide range of use possibilities, since it was not restrained to a single antigen but instead thought to be used against any breast cancer associated target, thus being a valuable tool.
Resumo:
AbstractPhage display is a high-throughput subtractive proteomic technology used for the generation and screening of large peptide and antibody libraries. It is based on the selection of phage-fused surface-exposed peptides that recognize specific ligands and demonstrate desired functionality for diagnostic and therapeutic purposes. Phage display has provided unmatched tools for controlling viral, bacterial, fungal, and parasitic infections, and allowed identification of new therapeutic targets to treat cancer, metabolic diseases, and other chronic conditions. This review presents recent advancements in serodiagnostics and prevention of leishmaniasis -an important tropical parasitic disease- achieved using phage display for the identification of novel antigens with improved sensitivity and specificity. Our focus is on theranostics of visceral leishmaniasis with the aim to develop biomarker candidates exhibiting both diagnostic and therapeutic potential to fight this important, yet neglected, tropical disease.
Resumo:
Notch is a conserved signalling pathway, which plays a crucial role in a multiple cellular processes such as stem cell self-renewal, cell division, proliferation and apoptosis. In mammalian, four Notch receptors and five ligands are described, where interaction is achieved through their extracellular domains, leading to a transcription activation of different target genes. Increased expression of Notch ligands has been detected in several types of cancer, including breast cancer suggesting that these proteins represent possible therapeutic targets. The goal of this work was to generate quality protein targets and, by phage display technology, select function-blocking antibodies specific for Notch ligands. Phage display is a powerful technique that allows the generation of highly specific antibodies to be used for therapeutics, and it has also proved to be a reliable approach in identifying and validating new cancer-related targets. Also, we aimed at solving the tri-dimensional structure of the Notch ligands alone and in complex with selected antibodies. In this work, the initial phase focused on the optimization of the expression and purification of a human Delta-like 1 ligand mutant construct (hDLL1-DE3), by refolding from E. coli inclusion bodies. To confirm the biological activity of the produced recombinant protein cellular functional studies were performed, revealing that treatment with hDLL1-DE3 protein led to a modulation of Notch target genes. In a second stage of this study, Antibody fragments (Fabs) specific for hDLL1-DE3 were generated by phage display, using the produced protein as target, in which one good Fab candidate was selected to determine the best expression conditions. In parallel, multiple crystallization conditions were tested with hDLL1-DE3, but so far none led to positive results.
Resumo:
Tese de Doutoramento em Ciências da Literatura (área de especialização em Literatura Portuguesa).
Resumo:
Open Display Networks have the potential to allow many content creators to publish their media to an open-ended set of screen displays. However, this raises the issue of how to match that content to the right displays. In this study, we aim to understand how the perceived utility of particular media sharing scenarios is affected by three independent variables, more specifically: (a) the locativeness of the content being shared; (b) how personal that content is and (c) the scope in which it is being shared. To assess these effects, we composed a set of 24 media sharing scenarios embedded with different treatments of our three independent variables. We then asked 100 participants to express their perception of the relevance of those scenarios. The results suggest a clear preference for scenarios where content is both local and directly related to the person that is publishing it. This is in stark contrast to the types of content that are commonly found in public displays, and confirms the opportunity that open displays networks may represent a new media for self-expression. This novel understanding may inform the design of new publication paradigms that will enable people to share media across the display networks.
Resumo:
The aim of this work was to investigate the effect on a display gamut of varying the optical density and the position of the maximum sensitivity of the cones spectra of anomalous trichromatic observers. The anomalous cone spectral sensitivities were estimated for a set of varying optical density and maximum sensitivity spectra conditions and used to compute the display color gamut. The computed display gamut simulated for normal observers the chro- matic diversity perceived by anomalous observers. It was found that even small variations on the optical density and on the position of the maximum sensitivity spectra have an impact on the simulations of the display gamut for anomalous observers. It was also found that simulations for deuteroanomalous observers are the ones with greater impact if the estimation of the corresponding color display gamut is not carefully adjusted for the observer.