957 resultados para discrete choice theory
Resumo:
Integrated choice and latent variable (ICLV) models represent a promising new class of models which merge classic choice models with the structural equation approach (SEM) for latent variables. Despite their conceptual appeal, applications of ICLV models in marketing remain rare. We extend previous ICLV applications by first estimating a multinomial choice model and, second, by estimating hierarchical relations between latent variables. An empirical study on travel mode choice clearly demonstrates the value of ICLV models to enhance the understanding of choice processes. In addition to the usually studied directly observable variables such as travel time, we show how abstract motivations such as power and hedonism as well as attitudes such as a desire for flexibility impact on travel mode choice. Furthermore, we show that it is possible to estimate such a complex ICLV model with the widely available structural equation modeling package Mplus. This finding is likely to encourage more widespread application of this appealing model class in the marketing field.
Resumo:
Four basic medical decision making models are commonly discussed in the literature in reference to physician-patient interactions. All fall short in their attempt to capture the nuances of physician-patient interactions, and none satisfactorily address patients' preferences for communication and other attributes of care. Prostate cancer consultations are one setting where preferences matter and are likely to vary among patients. Fortunately, discrete choice experiments are capable of casting light on patients' preferences for communication and other attributes of value that make up a consultation before the consultation occurs, which is crucial if patients are to derive the most utility from the process of reaching a decision as well as the decision itself. The results of my dissertation provide strong support to the notion that patients, at least in the hypothetical setting of a DCE, have identifiable preferences for the attributes of a prostate cancer consultation and that those preferences are capable of being elicited before a consultation takes place. Further, patients' willingness-to-pay for the non-cost attributes of the consultation is surprisingly robust to a variety of individual level variables of interest. ^
Resumo:
Peer reviewed
Resumo:
"November 1982."
Resumo:
Considering the so-called "multinomial discrete choice" model the focus of this paper is on the estimation problem of the parameters. Especially, the basic question arises how to carry out the point and interval estimation of the parameters when the model is mixed i.e. includes both individual and choice-specific explanatory variables while a standard MDC computer program is not available for use. The basic idea behind the solution is the use of the Cox-proportional hazards method of survival analysis which is available in any standard statistical package and provided a data structure satisfying certain special requirements it yields the MDC solutions desired. The paper describes the features of the data set to be analysed.
Resumo:
In 2010, a household survey was carried out in Hungary among 1037 respondents to study consumer preferences and willingness to pay for health care services. In this paper, we use the data from the discrete choice experiments included in the survey, to elicit the preferences of health care consumers about the choice of health care providers. Regression analysis is used to estimate the effect of the improvement of service attributes (quality, access, and price) on patients’ choice, as well as the differences among the socio-demographic groups. We also estimate the marginal willingness to pay for the improvement in attribute levels by calculating marginal rates of substitution. The results show that respondents from a village or the capital, with low education and bad health status are more driven by the changes in the price attribute when choosing between health care providers. Respondents value the good skills and reputation of the physician and the attitude of the personnel most, followed by modern equipment and maintenance of the office/hospital. Access attributes (travelling and waiting time) are less important. The method of discrete choice experiment is useful to reveal patients’ preferences, and might support the development of an evidence-based and sustainable health policy on patient payments.
Resumo:
Objective: The objective of the study is to explore preferences of gastroenterologists for biosimilar drugs in Crohn’s Disease and reveal trade-offs between the perceived risks and benefits related to biosimilar drugs. Method: Discrete choice experiment was carried out involving 51 Hungarian gastroenterologists in May, 2014. The following attributes were used to describe hypothetical choice sets: 1) type of the treatment (biosimilar/originator) 2) severity of disease 3) availability of continuous medicine supply 4) frequency of the efficacy check-ups. Multinomial logit model was used to differentiate between three attitude types: 1) always opting for the originator 2) willing to consider biosimilar for biological-naïve patients only 3) willing to consider biosimilar treatment for both types of patients. Conditional logit model was used to estimate the probabilities of choosing a given profile. Results: Men, senior consultants, working in IBD center and treating more patients are more likely to willing to consider biosimilar for biological-naïve patients only. Treatment type (originator/biosimilar) was the most important determinant of choice for patients already treated with biologicals, and the availability of continuous medicine supply in the case biological-naïve patients. The probabilities of choosing the biosimilar with all the benefits offered over the originator under current reimbursement conditions are 89% vs 11% for new patients, and 44% vs 56% for patients already treated with biological. Conclusions: Gastroenterologists were willing to trade between perceived risks and benefits of biosimilars. The continuous medical supply would be one of the major benefits of biosimilars. However, benefits offered in the scenarios do not compensate for the change from the originator to the biosimilar treatment of patients already treated with biologicals.
Resumo:
ACKNOWLEDGEMENTS: The Medman study was funded by the Department of Health for England and Wales and managed by a collaboration of the National Pharmaceutical Association, the Royal Pharmaceutical Society of Great Britain, the Company Chemist Association and the Co-operative Pharmacy Technical Panel, led by the Pharmaceutical Services Negotiating Committee. The research in this paper was undertaken while the lead author MT was undertaking a doctoral research fellowship jointly funded by the Economic and Social Research Council (ESRC) and the Medical Research Council (MRC). The Health Economics Research Unit (HERU), University of Aberdeen is funded by the Chief Scientific Office of the Scottish Government Health and Social Care Directorate.
Resumo:
© 2016 John Wiley & Sons Ltd. Funding: our thanks go to NHS Education for Scotland for funding this programme of work.
Resumo:
Funding: Verity Watson acknowledges financial support from the Chief Scientist Office of the Scottish Government Health and Social Care Directorates. The funders had no role in the study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. Acknowledgements: We thank Marjon van der Pol, Mandy Ryan and Rainer Schulz for helpful comments and suggestions throughout the project. We also thank Karen Gerard and Tim Bolt for comparing the results of our systematic review with a similar systematic review they are conducting at the same time. We would like to thank Douglas Olley for excellent research assistance.
Resumo:
Peer reviewed
Resumo:
People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.