950 resultados para discrete choice experiments
Resumo:
When analysing choice experiments respondents are assumed to attend all attributes and alternatives in the same way. However, because of the important role that the price of the alternatives can play in the decision-making process, the level of price of a specific alternative may have consequences on the level of consideration given to the remaining attributes of the alternative. In this article, we propose the use of a discrete mixtures logit approach to accommodate respondents ignoring alternatives in stated choice experiments. Our results indicate a higher propensity for respondents to ignore attributes when they face cheap rather than expensive alternatives. We also find that allowing for this leads to substantial improvements in the model performance.
Resumo:
Typical daily decision-making process of individuals regarding use of transport system involves mainly three types of decisions: mode choice, departure time choice and route choice. This paper focuses on the mode and departure time choice processes and studies different model specifications for a combined mode and departure time choice model. The paper compares different sets of explanatory variables as well as different model structures to capture the correlation among alternatives and taste variations among the commuters. The main hypothesis tested in this paper is that departure time alternatives are also correlated by the amount of delay. Correlation among different alternatives is confirmed by analyzing different nesting structures as well as error component formulations. Random coefficient logit models confirm the presence of the random taste heterogeneity across commuters. Mixed nested logit models are estimated to jointly account for the random taste heterogeneity and the correlation among different alternatives. Results indicate that accounting for the random taste heterogeneity as well as inter-alternative correlation improves the model performance.
Resumo:
This paper uses a correlated multinomial logit model and a Poisson regression model to measure the factors affecting demand for different types of transportation by elderly and disabled people in rural Virginia. The major results are: (a) A paratransit system providing door-to-door service is highly valued by transportation-handicapped people; (b) Taxis are probably a potential but inferior alternative even when subsidized; (c) Buses are a poor alternative, especially in rural areas where distances to bus stops may be long; (d) Making buses handicap-accessible would have a statistically significant but small effect on mode choice; (e) Demand is price inelastic; and (f) The total number of trips taken is insensitive to mode availability and characteristics. These results suggest that transportation-handicapped people take a limited number of trips. Those they do take are in some sense necessary (given the low elasticity with respect to mode price or availability). People will substitute away from relying upon others when appropriate transportation is available, at least to some degree. But such transportation needs to be flexible enough to meet the needs of the people involved.
Resumo:
This paper considers two problems that frequently arise in dynamic discrete choice problems but have not received much attention with regard to simulation methods. The first problem is how to simulate unbiased simulators of probabilities conditional on past history. The second is simulating a discrete transition probability model when the underlying dependent variable is really continuous. Both methods work well relative to reasonable alternatives in the application discussed. However, in both cases, for this application, simpler methods also provide reasonably good results.
Resumo:
Objective: To identify key stakeholder preferences and priorities when considering a national healthcare-associated infection (HAI) surveillance programme through the use of a discrete choice experiment (DCE). Setting: Australia does not have a national HAI surveillance programme. An online web-based DCE was developed and made available to participants in Australia. Participants: A sample of 184 purposively selected healthcare workers based on their senior leadership role in infection prevention in Australia. Primary and secondary outcomes: A DCE requiring respondents to select 1 HAI surveillance programme over another based on 5 different characteristics (or attributes) in repeated hypothetical scenarios. Data were analysed using a mixed logit model to evaluate preferences and identify the relative importance of each attribute. Results: A total of 122 participants completed the survey (response rate 66%) over a 5-week period. Excluding 22 who mismatched a duplicate choice scenario, analysis was conducted on 100 responses. The key findings included: 72% of stakeholders exhibited a preference for a surveillance programme with continuous mandatory core components (mean coefficient 0.640 (p<0.01)), 65% for a standard surveillance protocol where patient-level data are collected on infected and non-infected patients (mean coefficient 0.641 (p<0.01)), and 92% for hospital-level data that are publicly reported on a website and not associated with financial penalties (mean coefficient 1.663 (p<0.01)). Conclusions: The use of the DCE has provided a unique insight to key stakeholder priorities when considering a national HAI surveillance programme. The application of a DCE offers a meaningful method to explore and quantify preferences in this setting.
Resumo:
We report findings from a choice experiment survey designed to estimate the economic benefits of policy measures to improve the rural landscape in the Republic of Ireland. Using a panel mixed logit specification to account for unobserved taste heterogeneity we derived individual-specific willingness-to-pay (WTP) estimates for each respondent in the sample. We subsequently investigated the spatial dependence of these estimates. Results suggest the existence of positive spatial autocorrelation for all rural landscape attributes. As a means of benefit transfer, kriging methods were employed to interpolate WTP estimates across the whole of the Republic of Ireland. The kriged WTP surfaces confirm the existence of spatial dependence and illustrate the implied spatial variation and regional disparities in WTP for all the rural landscape improvements investigated.
Testing the stability of the benefit transfer function for discrete choice contingent valuation data
Resumo:
This paper examines the stability of the benefit transfer function across 42 recreational forests in the British Isles. A working definition of reliable function transfer is Put forward, and a suitable statistical test is provided. A novel split sample method is used to test the sensitivity of the models' log-likelihood values to the removal of contingent valuation (CV) responses collected at individual forest sites, We find that a stable function improves Our measure of transfer reliability, but not by much. We conclude that, in empirical Studies on transferability, considerations of function stability are secondary to the availability and quality of site attribute data. Modellers' can study the advantages of transfer function stability vis-a-vis the value of additional information on recreation site attributes. (c) 2008 Elsevier GmbH. All rights reserved.
Resumo:
In this study we show that forest areas contribute significantly to the estimated benefits from om outdoor recreation in Northern Ireland. Secondly we provide empirical evidence of the gains in the statistical efficiency of both benefit and parameter estimates obtained by analysing follow-up responses with Double Bounded interval data analysis. As these gains are considerable, it is clearly worth considering this method in CVM survey design even when moderately large sample sizes are used. Finally we demonstrate that estimates of means and medians of WTP distributions for access to forest recreation show plausible magnitude, are consistent with previous UK studies, and converge across parametric and non-parametic methods of estimation.