941 resultados para discoloration and degradation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hyaluronan is an important connective tissue glycosaminoglycan. Elevated hyaluronan biosynthesis is a common feature during tissue remodeling under both physiological and pathological conditions. Through its interactions with hyaladherins, hyaluronan affects several cellular functions such as cell migration and differentiation. The activities of hyaluronan-synthesizing and -degrading enzymes have been shown to be regulated in response to growth factors. During tumor progression hyaluronan stimulates tumor cell growth and invasiveness. Thus, elucidation of the molecular mechanisms which regulate the activities of hyaluronan-synthesizing and -degrading enzymes during tumor progression is highly desired.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based upon specialised experience of rope mechanics spanning over 20 years, this paper reviews the processes of degradation and fatigue that are relevant to hoisting ropes in mines. The review is brought up to date with an account of the most recent work in this field, which identifies a torsional fatigue process and quantifies the impact of degradation upon the residual service life. A proper understanding of these processes is important in determining how different parameters of hoist design and operation interact to determine rope life. This knowledge is also important in informing decisions relating to rope discard based upon observed condition, as well is identifying the critical features that must be quantified reliably during inspection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell wall storage polysaccharides (CWSPs) are found as the principal storage compounds in seeds of many taxonomically important groups of plants. These groups developed extremely efficient biochemical mechanisms to disassemble cell walls and use the products of hydrolysis for growth. To accumulate these storage polymers, developing seeds also contain relatively high activities of noncellulosic polysaccharide synthases and thus are interesting models to seek the discovery of genes and enzymes related to polysaccharide biosynthesis. CWSP systems offer opportunities to understand phenomena ranging from polysaccharide deposition during seed maturation to the control of source-sink relationship in developing seedlings. By studying polysaccharide biosynthesis and degradation and the consequences for cell and physiological behavior, we can use these models to develop future biotechnological applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The purpose of this experimental study was to evaluate the collagen fiber distribution histologically after phenytoin, cyclosporin, or nifedipine therapy and to correlate it with collagen I and matrix metalloproteinase (MMP)-1 and -2 gene expression levels.Methods: Gingival samples from the canine area were obtained from 12 male monkeys (Cebus apella). The mesial part of each sample was assessed by reverse transcription-polymerase chain reaction, whereas the distal part was processed histologically for picrosirius red and hematoxylin and eosin stainings, as well as for collagen IV immunostaining. One week after the first biopsy, the animals were assigned to three groups that received daily oral dosages of cyclosporin, phenytoin, or nifedipine for 120 days. Additional gingival samples were obtained on days 52 and 120 of treatment from two animals from each group on the opposite sides from the first biopsies.Results: Picrosirius red staining showed a predominance of mature collagen fibers in the control group. Conversely, there was an enlargement of areas occupied by immature collagen fibers in all groups at days 52 and 120, which was not uniform over each section. There was a general trend to lower levels of MMP-1 gene expression on day 52 and increased levels on day 120. Phenytoin led to increased levels of MMP-2 and collagen I gene expression on day 120, whereas the opposite was observed in the nifedipine group.Conclusion: Cyclosporin, phenytoin, and nifedipine led to phased and drug-related gene expression patterns, resulting in impaired collagen metabolism, despite the lack of prominent clinical signs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives. The aim of this study was to evaluate the cytotoxic effect of the monomers isobutyl methacrylate (IBMA) and 1,6-hexanediol dimethacrylate (1,6-HDMA), the plasticizer di-n-butyl phthalate (DBP), and the degradation by-products methacrylic acid (MA) and benzoic acid (BA) on L929 cells. Based on previous investigations on the release of these compounds from hard chairside reline resins, a range of concentrations (mu mol/L) were selected for the cytotoxicity tests (IBMA, 5.491406.57; 1,6-HDMA, 1.2239.32; DBP, 1.12143.8; MA, 9.07581; BA, 3.19409).Methods. Cytotoxic effects were assessed using MTT and 3H-thymidine assays after the cells had been exposed to the test compounds at the given concentrations for 24h. Cytotoxicity was rated based on cell viability relative to controls (cells exposed to medium without test substances).Results. DNA synthesis activity was inhibited by all compounds. Mitochondrial dehydrogenase activity decreased in cells treated with monomers, plasticizer and MA by-product, whereas no cytotoxic effect was observed on contact with BA at the majority of concentrations tested. The ranges of suppression for 3H-thymidine assay were: IBMA, 2595%; 1,6-HDMA, 9598%; DBP, 4098%; MA, 9799%; BA, 5471%. For MTT assay, the ranges of suppression were: IBMA, 096%; 1,6-HDMA, 2689%; DBP, 1780%; MA, 5266%; BA, 027%. The 3H-thymidine assay was more sensitive than the MTT assay.Significance. This study evaluated the cytotoxicity of a wide range of concentrations of monomers (IBMA and 1,6-HDMA), plasticizer (DBP) and degradation by-products (MA and BA), including those expected to be released from hard chairside reline resins. The differences observed in the cytotoxicity of these compounds, along with other properties, may assist the dental practitioners in the selection of reline materials with improved service life performance and low risk of adverse reactions in patients who wear relined dentures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oxidation of a reactive dye, Reactive Blue 4, RB4, (C.I. 61205), widely used in the textile industries to color natural fibers, was studied by electrochemical techniques. The oxidation on glassy carbon electrode and reticulated vitreous carbon electrode occurs in only one step at 2.0 < PH < 12 involving a two-electron transfer to the amine group leading to the imide derivative. Dye solution was not decolorized effectively in this electrolysis process. Nevertheless, the oxidation of this dye on Ti/SnO2/SbOx (3% mol)/RuO2 (1% mol) electrode showed 100% of decolorization and 60% of total organic carbon removal in Na2SO4 0.2 M at PH 2.2 and potential of +2.4 V. Experiments on degradation photoelectrocatalytic were also carried out for RB4 degradation in Na2SO4 0.1 K PH 12, using a Ti/TiO2 photoanode biased at +1.0 V and UV light. After 1 h of electrolysis the results indicated total color removal and 37% of mineralization. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The feasibility of the photobleaching of a textile azo dye, reactive orange 16 (C.I. 17757), in aqueous solution using titanium dioxide thin-film electrodes prepared by the sol-gel method was investigated. The best conditions for maximum photoelectrocatalytic degradation were found to be pH > 10 for Na2SO4 medium and pH < 6 for NaCl. In both situations, an applied potential of +1.0 V and low dye concentration are recommended, when 100% of color removal is obtained after 20 min of photoelectrocatalysis. The effects of side reaction pathway on the degradation rate of dye in sulfate and chloride medium were presented and the best performance are optimized to situations closed to that verified in the textile effluent. The influence of variables as applied potential, pH, supporting electrolyte and dye concentration on the kinetics of photoelectrochemical degradation also were investigated. Oxalic acid is identified by HPLC and UV-Vis spectrophotometric methods as the main degradation product generated after 180 min of photoelectrocatalysis of 4 x 10(-5) mol l(-1) dye in sodium sulphate pH 12 and NaCl pH 4.0 and a maximum reduction of 56 and 62% TOC was obtained, respectively. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The zero-valent iron (ZVI) mediated degradation of the antibiotic ciprofloxacin (CIP) was studied under oxic condition. Operational parameters such as ZVI concentration and initial pH value were evaluated. Increase of the ZVI concentration from 1 to 5 g L−1 resulted in a sharp increase of the observed pseudo-first order rate constant of CIP degradation, reaching a plateau at around 10 g L−1. The contribution of adsorption to the overall removal of CIP and dissolved organic carbon (DOC) was evaluated after a procedure of acidification to pH 2.5 with sulfuric acid and sonication for 2 min. Adsorption increased as pH increased, while degradation decreased, showing that adsorption is not important for degradation. Contribution of adsorption was much more important for DOC removal than for CIP. Degradation of CIP resulted in partial defluorination since the fluoride measured corresponded to 34% of the theoretical value after 120 min of reaction. Analysis by liquid chromatography coupled to mass spectrometry showed the presence of products of hydroxylation on both piperazine and quinolonic rings generating fluorinated and defluorinated compounds as well as a product of the piperazine ring cleavage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study's aim was to evaluate the degradation rate of hydrogen peroxide (H2O2) and to quantify its penetration in tooth structure, considering the residence time of bleaching products on the dental enamel. For this study, bovine teeth were randomly divided according to the bleaching product received: Opalescence Xtra Boost 38%, White Gold Office 35%, Whiteness HP Blue 35%, Whiteness HP Maxx 35%, and Lase Peroxide Sensy 35%. To analyze the degradation of H2O2, the titration of bleaching agents with potassium permanganate was used, while the penetration of H2O2 was measured via spectrophotometric analysis of the acetate buffer solution, collected from the artificial pulp chamber. The analyses were performed immediately as well as 15 minutes, 30 minutes, and 45 minutes after product application. The data of degradation rate of H2O2 were submitted to analysis of variance (ANOVA) and Tukey tests, while ANOVA and Fisher tests were used for the quantification of H2O2, at the 5% level. The results showed that all products significantly reduced the concentration of H2O2 activates at the end of 45 minutes. It was also verified that the penetration of H2O2 was enhanced by increasing the residence time of the product on the tooth surface. It was concluded that the bleaching gels retained substantial concentrations of H2O2 after 45 minutes of application, and penetration of H2O2 in the dental structure is time-dependent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chlorinated solvents are the most ubiquitous organic contaminants found in groundwater since the last five decades. They generally reach groundwater as Dense Non-Aqueous Phase Liquid (DNAPL). This phase can migrate through aquifers, and also through aquitards, in ways that aqueous contaminants cannot. The complex phase partitioning to which chlorinated solvent DNAPLs can undergo (i.e. to the dissolved, vapor or sorbed phase), as well as their transformations (e.g. degradation), depend on the physico-chemical properties of the contaminants themselves and on features of the hydrogeological system. The main goal of the thesis is to provide new knowledge for the future investigations of sites contaminated by DNAPLs in alluvial settings, proposing innovative investigative approaches and emphasizing some of the key issues and main criticalities of this kind of contaminants in such a setting. To achieve this goal, the hydrogeologic setting below the city of Ferrara (Po plain, northern Italy), which is affected by scattered contamination by chlorinated solvents, has been investigated at different scales (regional and site specific), both from an intrinsic (i.e. groundwater flow systems) and specific (i.e. chlorinated solvent DNAPL behavior) point of view. Detailed investigations were carried out in particular in one selected test-site, known as “Caretti site”, where high-resolution vertical profiling of different kind of data were collected by means of multilevel monitoring systems and other innovative sampling and analytical techniques. This allowed to achieve a deep geological and hydrogeological knowledge of the system and to reconstruct in detail the architecture of contaminants in relationship to the features of the hosting porous medium. The results achieved in this thesis are useful not only at local scale, e.g. employable to interpret the origin of contamination in other sites of the Ferrara area, but also at global scale, in order to address future remediation and protection actions of similar hydrogeologic settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HIT cells have been widely used to study synthesis and secretion of insulin. It has been assumed that this cell line secretes no other islet hormones. To ascertain whether HIT cells synthesize, secrete, and degrade glucagon, we examined cell extracts for this peptide and compared secretion and degradation of glucagon and insulin during stimulation of the cells by arginine. Glucagon levels in acid extracts of HIT cells were found to be 0.72 +/- 0.15 pmol/mg protein. Both glucagon and insulin were maximally stimulated in a glucagon/insulin molar ratio of 0.029 by arginine concentrations of 25-50 nM, and the concentration of arginine that provided half-maximum responses for both hormones was approximately 3 mM. Diminution of arginine-induced glucagon secretion was caused by somatostatin, a physiological inhibitor of pancreatic islet alpha-cell function. HPLC was used to authenticate the glucagon levels stimulated by arginine for 60 min and measured by RIA. Thirty-six percent of immunoreactive glucagon was found in the fractions representing authentic glucagon, whereas the remaining 64% eluted earlier. Experiments examining the fate of radiolabeled glucagon exposed to HIT cells revealed time-dependent degradation of the radioisotope to earlier eluting forms, which accounted for approximately 50% of the radioactivity by 60 min and was complete by 18 h, indicating that the early peak detected by RIA represented a metabolite of glucagon. Radioisotopic insulin was degraded more slowly with an apparent half-life of approximately 36 h. We conclude that HIT cells are not only able to synthesize, secrete, and degrade insulin, but also much smaller amounts of glucagon.