385 resultados para dipolar dephasing
Resumo:
We use a two-dimensional (2D) elastic free energy to calculate the effective interaction between two circular disks immersed in smectic-C films. For strong homeotropic anchoring, the distortion of the director field caused by the disks generates topological defects that induce an effective interaction between the disks. We use finite elements, with adaptive meshing, to minimize the 2D elastic free energy. The method is shown to be accurate and efficient for inhomogeneities on the length scales set by the disks and the defects, that differ by up to 3 orders of magnitude. We compute the effective interaction between two disk-defect pairs in a simple (linear) configuration. For large disk separations, D, the elastic free energy scales as similar to D-2, confirming the dipolar character of the long-range effective interaction. For small D the energy exhibits a pronounced minimum. The lowest energy corresponds to a symmetrical configuration of the disk-defect pairs, with the inner defect at the mid-point between the disks. The disks are separated by a distance that, is twice the distance of the outer defect from the nearest disk. The latter is identical to the equilibrium distance of a defect nucleated by an isolated disk.
Low temperature structural transitions in dipolar hard spheres: the influence on magnetic properties
Resumo:
We investigate the structural chain-to-ring transition at low temperature in a gas of dipolar hard spheres (DRS). Due to the weakening of entropic contribution, ring formation becomes noticeable when the effective dipole-dipole magnetic interaction increases, It results in the redistribution of particles from usually observed flexible chains into flexible rings. The concentration (rho) of DI-IS plays a crucial part in this transition: at a very low rho only chains and rings are observed, whereas even a slight increase of the volume fraction leads to the formation of branched or defect structures. As a result, the fraction of DHS aggregated in defect-free rings turns out to be a non-monotonic function of rho. The average ring size is found to be a slower increasing function of rho when compared Lo that of chains. Both theory and computer simulations confirm the dramatic influence of the ring formation on the rho-dependence of the initial magnetic susceptibility (chi) when the temperature decreases. The rings clue to their zero total dipole moment are irresponsive to a weak magnetic field and drive to the strong decrease of the initial magnetic susceptibility. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
La dinámica molecular colectiva de los cristales líquidos (CL) juega un papel preponderante en la respuesta de estos sistemas ante la aplicación de campos eléctricos y magnéticos externos, por lo que el estudio básico de la dinámica molecular, particularmente de los movimientos correlacionados, es indispensable para el diseño de aplicaciones tecnológicas basadas en CL. Por otra parte, se reconoce que la dinámica molecular colectiva distintiva de las fases ordenadas de fluidos complejos es además una propiedad que controla procesos clave en diversidad de materiales biológicos (funcionalidad y propiedades viscoelásticas de membranas, resistencia al almacenamiento de semillas y alimentos, temperatura de transición vítrea de compuestos de almidón, estabilidad de fases lamelares, etc.). Al presente, la relación entre estos conceptos reclama exhaustivos análisis y técnicas adecuadas para estudiar los movimientos microscópicos en distintas escalas temporales. En este Proyecto de investigación básica proponemos desarrollar y optimizar un conjunto de técnicas de RMN selectivamente aptas para el estudio de la dinámica lenta característica de las fases parcialmente ordenadas, por lo que tendrían aplicación directa en sistemas de interés biológico y tecnológico. Mediante diversas secuencias de pulsos en experimentos de RMN, es posible preparar estados cuánticos de “orden dipolar” en el sistema de espines nucleares, tanto en muestras en fase sólida como en CL. Tales estados de orden, están caracterizados por "cuasi-invariantes" que son observables de espin que relajan lentamente, intercambiando energía con la red que hace las veces de reservorio térmico. En síntesis, una vez creado el orden y establecido el estado de cuasi-equilibrio de cada cuasi-invariante, el sistema se comporta como un sistema termodinámico en contacto térmico con una red. De hecho, con todo rigor, se puede caracterizar el grado de orden por una "temperatura de espin". Además hay evidencia que los cuasi-invariantes dipolares reflejan sensible y selectivamente los movimientos moleculares correlacionados (a diferencia del cuasiinvariante Zeeman o magnetización nuclear). El aspecto distintivo de nuestra propuesta con respecto al estado actual del conocimiento, radica en la provisión de un nuevo parámetro de relajación de protones en cristales líquidos, para lo cual enfocamos las tareas hacia la caracterización de estos cuasiinvariantes, al diseño de técnicas de medición de sus tiempos de relajación y al desarrollo de la teoría que relaciona a éstos con la dinámica molecular. El esquema de trabajo se basa en reconocer que los eventos relevantes en los experimentos de creación-relajación de cuasi-invariantes dipolares ocurren en dos escalas de tiempo: la escala microscópica asociada con la decoherencia de los estados cuánticos y la escala macroscópica en la que se observa la relajación espín-reservorio. Proponemos como hipótesis general que los procesos que gobiernan la decoherencia, determinan también la relajación espin-red. Proponemos un enfoque innovador dentro del campo general de relajación de espin nuclear por RMN: considerar al sistema de espines nucleares como un sistema cuántico abierto multi-spin interactuando con un sistema (también cuántico) no observado. Para incorporar el detalle de la dinámica en escala microscópica en la descripción de la relajación es necesario el estudio experimental de los fenómenos que gobiernan la decoherencia y la relajación. Los resultados esperados en cada uno de esos grupos se interrelacionan, ya que la caracterización de los observables dipolares es un paso indispensable para explotar la potencialidad de la relajación del orden dipolar en presencia de movimientos moleculares correlacionados.
Resumo:
We study strongly correlated ground and excited states of rotating quasi-2D Fermi gases constituted of a small number of dipole-dipole interacting particles with dipole moments polarized perpendicular to the plane of motion. As the number of atoms grows, the system enters an intermediate regime, where ground states are subject to a competition between distinct bulk-edge configurations. This effect obscures their description in terms of composite fermions and leads to the appearance of novel quasihole ground states. In the presence of dipolar interactions, the principal Laughlin state at filling upsilon=1/3 exhibits a substantial energy gap for neutral (total angular momentum conserving) excitations and is well-described as an incompressible Fermi liquid. Instead, at lower fillings, the ground state structure favors crystalline order.
Resumo:
Partial crystallization of the metallic glass Co66Si16B12Fe4Mo2 was performed by annealing at temperatures between 500 and 540°C for 10-20 min, resulting in crystallite volume fractions of (0.7-5)×10¿3 and sizes of 50-100 nm. This two-phase alloy presents a remarkable feature: a hysteresis loop shift that can be tailored by simply premagnetizing the sample in the adequate magnetic field. Shifts as large as five times the coercive field have been obtained which make them interesting for application as magnetic cores in dc pulse transformers. The asymetrical magnetic reversal is explained in terms of the magnetic dipolar field interaction and the observed hysteresis loops have been satisfactorily simulated by a modification of Stoner-Wohlfarth¿s model of coherent rotations.
Resumo:
Atribution as a function of the time are analyzed and this study leads to a deeper knowledge of the microscopic processes involved in the magnetic relaxation
Resumo:
We report the first example of a transition to long-range magnetic order in a purely dipolarly interacting molecular magnet. For the magnetic cluster compound Mn6O4Br4(Et2dbm)6, the anisotropy experienced by the total spin S=12 of each cluster is so small that spin-lattice relaxation remains fast down to the lowest temperatures, thus enabling dipolar order to occur within experimental times at Tc=0.16 K. In high magnetic fields, the relaxation rate becomes drastically reduced and the interplay between nuclear- and electron-spin lattice relaxation is revealed.
Resumo:
We study the interplay between the effects of surface anisotropy and dipolar interactions in monodisperse assemblies of nanomagnets with oriented anisotropy. We derive asymptotic formulas for the assembly magnetization, taking into account temperature, applied field, core and surface anisotropy, and dipolar interparticle interactions. We find that the interplay between surface anisotropy and dipolar interactions is well described by the analytical expression of the assembly magnetization derived here: the overall sign of the product of the two parameters governing the surface and the dipolar contributions determines whether intrinsic and collective terms compete or have synergistic effects on the magnetization. This is illustrated by the magnetization curves of γ-Fe2O3 nanoparticle assemblies in the low concentration limit.
Resumo:
The measurement of nuclear magnetic resonance parameters in an anisotropic media, such as residual dipolar coupling (RDC), has proven to be an excellent methodology for the refinement of chemical structures, being used as a complementary tool in the determination of the relative configuration, conformation, and constitution of organic compounds. In this study, we applied this methodology to determine the relative configuration of α-santonin, a natural product with four stereocenters, while assigning its prochiral methylene protons using only the RDCs obtained in a polyacrylonitrile polymer gel swollen in DMSO-d6.
Resumo:
Quantum computation and quantum communication are two of the most promising future applications of quantum mechanics. Since the information carriers used in both of them are essentially open quantum systems it is necessary to understand both quantum information theory and the theory of open quantum systems in order to investigate realistic implementations of such quantum technologies. In this thesis we consider the theory of open quantum systems from a quantum information theory perspective. The thesis is divided into two parts: review of the literature and original research. In the review of literature we present some important definitions and known results of open quantum systems and quantum information theory. We present the definitions of trace distance, two channel capacities and superdense coding capacity and give a reasoning why they can be used to represent the transmission efficiency of a communication channel. We also show derivations of some properties useful to link completely positive and trace preserving maps to trace distance and channel capacities. With the help of these properties we construct three measures of non-Markovianity and explain why they detect non-Markovianity. In the original research part of the thesis we study the non-Markovian dynamics in an experimentally realized quantum optical set-up. For general one-qubit dephasing channels we calculate the explicit forms of the two channel capacities and the superdense coding capacity. For the general two-qubit dephasing channel with uncorrelated local noises we calculate the explicit forms of the quantum capacity and the mutual information of a four-letter encoding. By using the dynamics in the experimental implementation as a set of specific dephasing channels we also calculate and compare the measures in one- and two-qubit dephasing channels and study the options of manipulating the environment to achieve revivals and higher transmission rates in superdense coding protocol with dephasing noise. Kvanttilaskenta ja kvanttikommunikaatio ovat kaksi puhutuimmista tulevaisuuden kvanttimekaniikan käytännön sovelluksista. Koska molemmissa näistä informaatio koodataan systeemeihin, jotka ovat oleellisesti avoimia kvanttisysteemejä, sekä kvantti-informaatioteorian, että avointen kvanttisysteemien tuntemus on välttämätöntä. Tässä tutkielmassa käsittelemme avointen kvanttisysteemien teoriaa kvantti-informaatioteorian näkökulmasta. Tutkielma on jaettu kahteen osioon: kirjallisuuskatsaukseen ja omaan tutkimukseen. Kirjallisuuskatsauksessa esitämme joitakin avointen kvanttisysteemien ja kvantti-informaatioteorian tärkeitä määritelmiä ja tunnettuja tuloksia. Esitämme jälkietäisyyden, kahden kanavakapasiteetin ja superdense coding -kapasiteetin määritelmät ja esitämme perustelun sille, miksi niitä voidaan käyttää kuvaamaan kommunikointikanavan lähetystehokkuutta. Näytämme myös todistukset kahdelle ominaisuudelle, jotka liittävät täyspositiiviset ja jäljensäilyttävät kuvaukset jälkietäisyyteen ja kanavakapasiteetteihin. Näiden ominaisuuksien avulla konstruoimme kolme epä-Markovisuusmittaa ja perustelemme, miksi ne havaitsevat dynamiikan epä-Markovisuutta. Oman tutkimuksen osiossa tutkimme epä-Markovista dynamiikkaa kokeellisesti toteutetussa kvanttioptisessa mittausjärjestelyssä. Yleisen yhden qubitin dephasing-kanavan tapauksessa laskemme molempien kanavakapasiteettien ja superdense coding -kapasiteetin eksplisiittiset muodot. Yleisen kahden qubitin korreloimattomien ympäristöjen dephasing-kanavan tapauksessa laskemme yhteisen informaation lausekkeen nelikirjaimisessa koodauksessa ja kvanttikanavakapasiteetin. Käyttämällä kokeellisen mittajärjestelyn dynamiikkoja esimerkki dephasing-kanavina me myös laskemme konstruoitujen epä-Markovisuusmittojen arvot ja vertailemme niitä yksi- ja kaksi-qubitti-dephasing-kanavissa. Lisäksi käyttäen kokeellisia esimerkkikanavia tutkimme, kuinka ympäristöä manipuloimalla superdense coding –skeemassa voidaan saada yhteinen informaatio ajoittain kasvamaan tai saavuttaa kaikenkaikkiaan korkeampi lähetystehokkuus.