965 resultados para dinâmica dos fluidos computacional
Resumo:
Turbomáquinas são máquinas operacionais que transferem energia mecânica entre um rotor e um fluido. Estas máquinas têm muitas aplicações industriais. Um dos componentes de uma turbomáquina responsável pela transferência da energia, ou receber a rotação do eixo e transformar em energia de fluido em caso de bomba ou transferir a energia do fluido para o eixo em caso de uma turbina, é o impelidor ou rotor. O fenómeno da cavitação envolve escoamento bifásico: o líquido a ser bombeado e as bolhas de vapor que são formadas durante o processo de bombeamento. O processo de formação dessas bolhas é complexo, mas ocorre principalmente devido a presença de regiões de pressões muito baixas. O colapso dessas bolhas pode muitas vezes levar a deterioração do material, dependendo da intensidade ou da velocidade de colapso das bolhas. O principal objetivo deste trabalho foi estudar o comportamento hidrodinâmico do escoamento nos canais do impelidor de uma turbomáquina do tipo radial usando recursos de fluidodinâmica computacional (CFD). Uma abordagem Euler-Lagrange acoplada com o modelo da equação de Langevin foi empregada para estimar a trajetória das bolhas. Resultados das simulações mostram as particularidades de um escoamento líquido-bolha de vapor passando em um canal de geometria curva, fornecendo assim informações que podem nos ajudar na prevenção da cavitação nessas máquinas.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Este estudo foi motivado pela possibilidade de se empregar os conhecimentos da engenharia mecânica na solução de problemas de engenharia de alimentos por métodos numéricos, assim como pela utilização da dinâmica dos fluidos computacional (CFD) em mais um campo de pesquisa. A idéia básica foi a aplicação do método de elementos finitos na solução de problemas de escoamentos envolvendo mistura de diferentes componentes. Muitos alimentos apresentam-se como fluidos, e seu comportamento material pode ser newtoniano ou não newtoniano, às vezes descrito por relações constitutivas bastante complexas. Utilizou-se uma teoria de misturas apoiada nos conceitos de mecânica do contínuo para a modelagem mecânica do que se passou a considerar como um sistema multicomponente. Necessitou-se de uma detalhada revisão sobre os postulados clássicos da mecânica para que se pudesse recolocá-los, com alguma segurança e embasamento teórico, para sistemas multicomponentes. Tendo em mãos a modelagem do balanço de momentum e massa em sistemas multicomponentes, pôde-se aproximar estas equações através do método de elementos finitos. A literatura aponta que o método clássico de Galerkin não possui a eficiência necessária para a solução das equações de escoamento, que envolvem uma formulação mista onde se faz necessário tomar compatíveis os subespaços de velocidade e pressão, e também devido à natureza assimétrica da aceleração advectiva, o que também aparece como uma dificuldade na solução de problemas de advecçãodifusão, nos casos de advecção dominante. Assim, fez-se uso do método estabilizado tipo GLS, o qual supera as dificuldades enftentadas pelo método de Galerkin clássico em altos números de Reynolds, adicionando termos dependentes da malha, construídos de forma a aumentar a estabilidade da formulação de Galerkin original sem prejudicar sua consistência. Os resultados numéricos dividem-se em três categorias: problemas de transferência de quantidade de movimento para fluidos newtonianos, problemas de transferência de quantidade de movimento para fluidos com não linearidade material e problemas de advecção e difusão de massa em misturas. A comparação de algumas aproximações obtidas com as de outros autores se mostraram concordantes. A aproximação de problemas de fluidos segundo os modelos Carreau e Casson geraram os resultados esperados. A aproximação de um problema de injeção axial com mistura de dois fluidos produziu resultados coerentes, motivando a aplicação prática da aproximação por métodos estabilizados de problemas de misturas.
Resumo:
A paralelização de aplicaçõpes envolvendo a solução de problemas definidos sob o escopo da Dinâmica dos Fluidos Computacional normalmente é obtida via paralelismo de dados, onde o domínio da aplicação é dividido entre os diversos processadores, bem como a manutenção do balancecamento durante a execução é um problema complexo e diversas heurísticas têm sido desenvolvidas. Aplicações onde a simulação é dividida em diversas fases sobre partes diferentes do domínio acrescentam uma dificuldade maior ao particionamento, ao se buscar a distirbuição equlibrada das cargas em todas as fases. este trabalho descreve a implementação de mecanismos de particionamento e balanceamento de carga em problemas multi-fase sobre clusters de PCs. Inicialmente é apresentada a aplicação desenvolvida, um modelo de circulação e transporte de susbtâncias sobre corpos hídricos 2D e 3 D, que pode ser utilizado para modelar qualquer corpo hídrico a partir da descrição de sua geometria, batimetria e condições de contorno. Todo o desenvolvimento e testes do modelo foi feito utilizando como caso de estudo o domínio do Lago Guaíba, em Porto Alegre. Após, são descritas as principais heurísticas de particionamento de domínio de aplicações multi-fase em clusters, bem como mecanismos para balanceamento de carga para este tipo de aplicação. Ao final, é apresentada a solução proposta e desenvolvida, bem como os resultados obtidos com a mesma.
Resumo:
Neste trabalho desenvolve-se um estudo numérico do fluxo de ar em torno da geometria de um pára-quedas tradicional simplificado, para alguns valores de Reynolds. O método baseia-se na solução das equações incompressíveis de Navier- Stokes discretizadas pelo método de diferenças finitas e integradas pelo método de Runge-Kutta. Utiliza-se o método dos contornos virtuais para representar a geometria numa malha cartesiana e o método de otimização não-linear dos poliedros flexíveis para otimização do coeficiente de arraste calculado através do código de dinâmica de fluidos computacional; esteé um método de busca multivariável, onde o pior vértice de um poliedro com n + 1 vérticesé substituído por um novo.
Análise de escoamentos incompressíveis utilizando simulação de grandes escalas e adaptação de malhas
Resumo:
No presente estudo, são apresentadas soluções numéricas de problemas de Engenharia, na área de Dinâmica dos Fluidos Computacional, envolvendo fluidos viscosos, em escoamentos incompressíveis, isotérmicos e não isotérmicos, em regime laminar e turbulento, podendo envolver transporte de massa. Os principais objetivos deste trabalho são a formulação e a aplicação de uma estratégia de adaptação automática de malhas e a inclusão de modelos de viscosidade turbulenta, integrados com um algoritmo utilizado para simular escoamentos de fluidos viscosos bi e tridimensionais, no contexto de malhas não estruturadas. O estudo é dirigido no sentido de aumentar o conhecimento a respeito das estruturas de escoamentos turbulentos e de estudar os efeitos físicos no transporte de quantidades escalares propiciando, através de técnicas de adaptação automática de malhas, a obtenção de soluções numéricas precisas a um custo computacional otimizado. As equações de conservação de massa, de balanço de quantidade de movimento e de quantidade escalar filtradas são utilizadas para simular as grandes escalas de escoamentos turbulentos e, para representar as escalas submalha, são utilizados dois modelos de viscosidade turbulenta: o modelo de Smagorinsky clássico e o modelo dinâmico. Para obter soluções numéricas com precisão, é desenvolvida e implementada uma estratégia de adaptação automática de malhas, a qual é realizada simultaneamente e interativamente com a obtenção da solução. O estudo do comportamento da solução numérica é fundamentado em indicadores de erro, com o propósito de mapear as regiões onde certos fenômenos físicos do escoamento ocorrem com maior intensidade e de aplicar nestas regiões um esquema de adaptação de malhas. A adaptação é constituída por processos de refinamento/desrefinamento e por um processo de suavização laplaciana. Os procedimentos para a implementação dos modelos de viscosidade turbulenta e a estratégia de adaptação automática de malhas são incorporados ao código computacional de elementos finitos tridimensionais, o qual utiliza elementos tetraédricos lineares. Aplicações de escoamentos de fluidos viscosos, incompressíveis, isotérmicos e não isotérmicos em regime laminar e turbulento são simuladas e os resultados são apresentados e comparados com os obtidos numérica ou experimentalmente por outros autores.
Resumo:
This research covers the topic of social housing and its relation to thermal comfort, so applied to an architectural and urban intervention in land situated in central urban area of Macaíba/RN, Brazil. Reflecting on the role of design and use of alternative building materials in the search for better performance is one of its main goals. The hypothesis is that by changing design parameters and choice of materials, it is possible to achieve better thermal performance results. Thus, we performed computer simulations of thermal performance and natural ventilation using computational fluid dynamics or CFD (Computational Fluid Dynamics). The presentation of the thermal simulation followed the methodology proposed in the dissertation Negreiros (2010), which aims to find the percentage of the amount of hours of comfort obtained throughout the year, while data analysis was made of natural ventilation from images generated by the images extracted from the CFD. From model building designed, was fitted an analytical framework that results in a comparison between three different proposals for dwellings housing model, which is evaluated the question of the thermal performance of buildings, and also deals with the spatial variables design, construction materials and costs. It is concluded that the final report confirmed the general hypotheses set at the start of the study, it was possible to quantify the results and identify the importance of design and construction materials are equivalent, and that, if combined, lead to gains in thermal performance potential.
Resumo:
The progressing cavity pumping (PCP) is one of the most applied oil lift methods nowadays in oil extraction due to its ability to pump heavy and high gas fraction flows. The computational modeling of PCPs appears as a tool to help experiments with the pump and therefore, obtain precisely the pump operational variables, contributing to pump s project and field operation otimization in the respectively situation. A computational model for multiphase flow inside a metallic stator PCP which consider the relative motion between rotor and stator was developed in the present work. In such model, the gas-liquid bubbly flow pattern was considered, which is a very common situation in practice. The Eulerian-Eulerian approach, considering the homogeneous and inhomogeneous models, was employed and gas was treated taking into account an ideal gas state. The effects of the different gas volume fractions in pump volumetric eficiency, pressure distribution, power, slippage flow rate and volumetric flow rate were analyzed. The results shown that the developed model is capable of reproducing pump dynamic behaviour under the multiphase flow conditions early performed in experimental works
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
A fluidização de partículas é amplamente utilizada na indústria, principalmente devido às altas taxas de transferência de calor e massa entre as fases. O acoplamento entre a Dinâmica dos Fluidos Computacional (CFD – Computational Fluid Dynamics) e o Método dos Elementos Discretos (DEM – Discrete Element Method) tem se tornado atrativo para a simulação de fluidização, já que nesse caso o movimento das partículas é analisado de forma mais direta do que em outros tipos de abordagens. O grande problema do acoplamento CFD-DEM é a alta exigência computacional para rastrear todas as partículas do sistema, o que leva ao uso de estratégias de redução do tempo de simulação que em caso de utilização incorreta podem comprometer os resultados. O presente trabalho trata da aplicação do acoplamento CFD-DEM na análise de fluidização de alumina, que é um problema importante para o setor mineral. Foram analisados diversos parâmetros capazes de influenciar os resultados e o tempo de simulação como os passos de tempo, os modelos de arrasto, a distribuição granulométrica das partículas, a constante de rigidez, a utilização de partículas representativas com tamanho maior que o das partículas reais, etc. O modelo de força de interação DEM utilizado foi o modelo de mola e amortecedor lineares (LSD – Linear Spring Dashpot). Todas as simulações foram realizadas com o software ANSYS FLUENT 14.5 e os resultados obtidos foram comparados com dados experimentais e da literatura. Tais resultados permitiram comprovar a capacidade do modelo linear LSD em predizer o comportamento global de leitos de alumina e reduzir o tempo de simulação, desde que os parâmetros do modelo sejam definidos de forma adequada.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG