976 resultados para dimorphic pathogenic fungi


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A phytochemical study of the ethyl acetate extract of the roots and adventitious roots of Spirotropis longifolia, a monodominant tree species of the Guianan rainforest, has allowed the isolation of three compounds: 2- hydroxy-8,9-methylenedioxy-2',2'-dimethylpyrano-[5',6':4,3]-6a-prenyl-[6aS,11aS]-pterocarpan (spirotropin A), 2-hydroxy-8,9-methylenedioxy-2',2'-dimethy1-3',4'-dihydropyrano-[5',6':4,3]-6a-prenyl-(6aS,11aS]-pterocarpan (spirotropin B), and 5,7-dihydroxy-6.8-dipreny1-2 ''''.2 ''''-dimethylpyrano[5 '''',6 '''': 3',4]-isoflavone (spirotropone). In addition, 10 known compounds, trans-oxyresveratrol, trans-resveratrol, piceatannol, daidzein, genistein, isoprunetin, lupeol, latifolol, gnetin D and gnetin E, were also isolated. These compounds were evaluated for their antifungal activity and their cytotoxicity, and their structures were established by 1D and 2D NMR, HRMS, CD and optical rotation measurements. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The naturally occurring reactive electrophilic species 12-oxo-phytodienoic acid (12-oxo-PDA) is a potent antifungal agent, whereas the plant growth regulator jasmonic acid, which is synthesized from 12-oxo-PDA, is ineffective. To address what structural features of the molecule endow it with antifungal activity, we synthesized a series of molecular mimics of 12-oxo-PDA varying in the length of the alkyl chain at its C-4 ring position. The octyl analogue (4-octyl cyclopentenone) was the most effective at suppressing spore germination and subsequent mycelial growth of a range of fungal pathogens and was particularly effective against Cladosporium herbarum and Botrytis cinerea, with minimum fungicidal concentrations in the range 100-200 µM. Introduction of a carboxyl group to the end of the chain, mimicking natural fatty acids, markedly reduced antifungal efficacy. Electrolyte leakage, indicative of membrane perturbation, was evident in both C. herbarum and B. cinerea exposed to 4-octyl cyclopentenone. Lipid composition analysis of the fungal spores revealed that those species with a high oil content, namely Fusarium oxysporum and Alternaria brassicicola, were less sensitive to 4-octyl cyclopentenone. The comparable hydrophobicity of 4-octyl cyclopentenone and 12-oxo-PDA accounts for the similar spore suppression activity of these two compounds. The relative ease of synthesis of 4-octyl cyclopentenone makes it an attractive compound for potential use as an antifungal agent. © 2011 SGM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trehalose is a non-reducing disaccharide essential for pathogenic fungal survival and virulence. The biosynthesis of trehalose requires the trehalose-6-phosphate synthase, Tps1, and trehalose-6-phosphate phosphatase, Tps2. More importantly, the trehalose biosynthetic pathway is absent in mammals, conferring this pathway as an ideal target for antifungal drug design. However, lack of germane biochemical and structural information hinders antifungal drug design against these targets.

In this dissertation, macromolecular X-ray crystallography and biochemical assays were employed to understand the structures and functions of proteins involved in the trehalose biosynthetic pathway. I report here the first eukaryotic Tps1 structures from Candida albicans (C. albicans) and Aspergillus fumigatus (A. fumigatus) with substrates or substrate analogs. These structures reveal the key residues involved in substrate binding and catalysis. Subsequent enzymatic assays and cellular assays highlight the significance of these key Tps1 residues in enzyme function and fungal stress response. The Tps1 structure captured in its transition-state with a non-hydrolysable inhibitor demonstrates that Tps1 adopts an “internal return like” mechanism for catalysis. Furthermore, disruption of the trehalose biosynthetic complex formation through abolishing Tps1 dimerization reveals that complex formation has regulatory function in addition to trehalose production, providing additional targets for antifungal drug intervention.

I also present here the structure of the Tps2 N-terminal domain (Tps2NTD) from C. albicans, which may be involved in the proper formation of the trehalose biosynthetic complex. Deletion of the Tps2NTD results in a temperature sensitive phenotype. Further, I describe in this dissertation the structures of the Tps2 phosphatase domain (Tps2PD) from C. albicans, A. fumigatus and Cryptococcus neoformans (C. neoformans) in multiple conformational states. The structures of the C. albicans Tps2PD -BeF3-trehalose complex and C. neoformans Tps2PD(D24N)-T6P complex reveal extensive interactions between both glucose moieties of the trehalose involving all eight hydroxyl groups and multiple residues of both the cap and core domains of Tps2PD. These structures also reveal that steric hindrance is a key underlying factor for the exquisite substrate specificity of Tps2PD. In addition, the structures of Tps2PD in the open conformation provide direct visualization of the conformational changes of this domain that are effected by substrate binding and product release.

Last, I present the structure of the C. albicans trehalose synthase regulatory protein (Tps3) pseudo-phosphatase domain (Tps3PPD) structure. Tps3PPD adopts a haloacid dehydrogenase superfamily (HADSF) phosphatase fold with a core Rossmann-fold domain and a α/β fold cap domain. Despite lack of phosphatase activity, the cleft between the Tps3PPD core domain and cap domain presents a binding pocket for a yet uncharacterized ligand. Identification of this ligand could reveal the cellular function of Tps3 and any interconnection of the trehalose biosynthetic pathway with other cellular metabolic pathways.

Combined, these structures together with significant biochemical analyses advance our understanding of the proteins responsible for trehalose biosynthesis. These structures are ready to be exploited to rationally design or optimize inhibitors of the trehalose biosynthetic pathway enzymes. Hence, the work described in this thesis has laid the groundwork for the design of Tps1 and Tps2 specific inhibitors, which ultimately could lead to novel therapeutics to treat fungal infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Portugal has been the world leader in the cork sectr in terms of exports, employing ten thousands of workers. In this working activity, the permanent contact with cork may lead to the exposure to fungi raising concerns as occupational hazards in cork industry. A study was developed aiming at assessing fungal contamination due to Aspergillus fumigatus complex and Penicillium glabrum complex by molecular methods in three cork industries in the outskirt of Lisbon city. The chosen fungal species are the ones most frequently associated with respiratory problems in workers from these industries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soybean ( Glycine max [L.] Merr.) root rot is an important disease of soybean under continuous cropping, and root rot is widely distributed throughout the world. This disease is extremely harmful, and it is difficult to prevent and control. The study aimed to elucidate the composition of root rot pathogenic fungal communities in the continuous cropping of soybean. In this study, we employed PCRDGGE technology to analyze the communities of root rot pathogenic fungi in soybean rhizosphere soil subjected to continuous cropping during a season with a high incidence of root rot in Heilongjiang province, China, the main soybean producing area in China. The results of 13 DGGE bands were analyzed by phylogenetic revealed that the predominant root rot pathogenic fungi in rhizosphere soil in the test area were Pythium ultimum and Fusarium species. The results of cluster analysis showed that the duration of continuous cropping, the soybean variety and the plant growth stage all had significant effects on the diversity of root rot pathogenic fungi in rhizosphere soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The habitat of the mycelial saprobic form of Paracoccidio ides brasiliensis, which produces the infectious propagula, has not been determined and has proven difficult for mycologists to describe. The fungus has been rarely isolated from the environment, the disease has a prolonged latency period and no outbreaks have been reported. These facts have precluded the adoption of preventive measures to avoid infection. The confirmation of natural infections in nine-banded armadillos (Dasypus novemcinctus) with P. brasiliensis, in high frequency and wide geographic distribution, has opened new avenues for the study and understanding of its ecology. Armadillos belong to the order Xenarthra, which has existed in South America ever since the Paleocene Era (65 million years ago), when the South American subcontinent was still a detached land, before the consolidation of what is now known as the American continent. on the other hand, strong molecular evidence suggests that P. brasiliensis and other dimorphic pathogenic fungi - such as Blastomyces dermatitidis, Coccidioides immitis and Histoplasma capsulatum - belong to the family Onygenaceae sensu Into (order Onygenales, Ascomycota), which appeared around 150 million years ago.P. brasiliensis ecology and relation to its human host are probably linked to the fungal evolutionary past, especially its long coexistence with and adaptation to animal hosts other than Homo sapiens, of earlier origin. Instead of being a blind alley, the meaning of parasitism for dimorphic pathogenic fungi should be considered as an open two-way avenue, in which the fungus may return to the environment, therefore contributing to preserve its teleomorphic (sexual) and anamorphic (asexual) forms in a defined and protected natural habitat. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Australia, fungi associated with larvae of the biological control agent Cactoblastis cactorum may contribute to the control of the exotic weed pricklypear (Opuntia inermis), C, cactorum larvae were assessed for their ability to vector pathogenic fungi into O, inermis by the infestation of larvae with fungal suspensions. Six fungal isolates caused disease after being carried into the host on external surfaces of larvae, and propagules of one isolate (UQ5109) initiated disease after being transferred from the cladode epidermis into the host by larvae feeding on the plant. Scanning electron microscopy revealed extensive hyphal growth on the external surfaces of larvae infested with several of the isolates. Fungi isolated from field-grown O, inermis cladodes were tested for pathogenicity to this plant in an in vivo plant assay. In total, 152 isolates were screened, 22 of which infected the host in pathogenicity tests. Only 1 (UQ5115) infected undamaged host tissue, whereas the remainder required the host to be wounded before infection could proceed. The majority of isolates were only weakly pathogenic, even when inoculated via wounds, suggesting that most were either saprophytes or weak parasites. This study demonstrates that it is possible for larvae of C, cactorum to transmit fungal pathogens into O, inermis tissue and it has provided a sound basis for future field work to determine the contribution that fungi make to the control of O. inermis, (C) 2001 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an attempt to isolate Paracoccidioides brasiliensis from nature 887 samples of soil from Botucatu, SP, Brazil, were collected cultured in brain heart infusion agar supplemented with dextrose, in potato dextrose agar and in yeast extract starch dextrose agar, all with antibiotics, at 25º and 37ºC. Five thermo-dependent dimorphic fungi morphologically resembling P. brasiliensis were isolated; two from armadillo holes; further studies of the biology, antigenicity and genetic features of the five dimorphic fungi are necessary to clarify their taxonomy and their possible relation to P. brasiliensis. In addition, 98 dematiaceous fungi and 581 different species of Aspergillus spp. were also isolated. Our findings emphasize that armadillos and their environment are associated with thermo-dimorphic fungi and confirm the ubiquity of pathogenic dematiaceous fungi and Aspergillus spp.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an attempt to isolate Paracoccidioides brasiliensis from nature 887 samples of soil from Botucatu, SP, Brazil, were collected cultured in brain heart infusion agar supplemented with dextrose, in potato dextrose agar and in yeast extract starch dextrose agar, all with antibiotics, at 25º and 37ºC. Five thermo-dependent dimorphic fungi morphologically resembling P. brasiliensis were isolated; two from armadillo holes; further studies of the biology, antigenicity and genetic features of the five dimorphic fungi are necessary to clarify their taxonomy and their possible relation to P. brasiliensis. In addition, 98 dematiaceous fungi and 581 different species of Aspergillus spp. were also isolated. Our findings emphasize that armadillos and their environment are associated with thermo-dimorphic fungi and confirm the ubiquity of pathogenic dematiaceous fungi and Aspergillus spp.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Paracoccidioides brasiliensis is characterized by a multiple budding phenotype and a polymorphic cell growth, leading to the formation of cells with extreme variations in shape and size. Since Cdc42 is a pivotal molecule in establishing and maintaining polarized growth for diverse cell types, as well as during pathogenesis of certain fungi, we evaluated its role during cell growth and virulence of the yeast-form of P. brasiliensis. We used antisense technology to knock-down PbCDC42`s expression in P. brasiliensis yeast cells, promoting a decrease in cell size and more homogenous cell growth, altering the typical polymorphism of wild-type cells. Reduced expression levels also lead to increased phagocytosis and decreased virulence in a mouse model of infection. We provide genetic evidences underlying Pbcdc42p as an important protein during host-pathogen interaction and the relevance of the polymorphic nature and cell size in the pathogenesis of P. brasiliensis. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The relative potential of the pathogenic fungi Beauveria bassiana and Zoophthora radicans for use as autodisseminated biological control agents of the diamondback moth (Plutella xylostella) was compared. The LC50 of B. bassiana conidia to third instar larvae was 499 conidia/mm(2) of leaf surface and individual cadavers of mycosed fourth instar larvae yielded a mean of 67.5 X 10(6) (+/- 7.5 x 10(6)) conidia. All concentrations of B. bassiana tested in inoculation chambers (0.24, 2.4, and 6.2 mug/mm(2)) induced 100% mortality in adult male moths within 7 days. The times to death and sporulation were concentration and exposure duration dependent. A standard procedure for inoculating male moths resulted in > 85% mortality from Z. radicans and > 93% mortality from B. bassiana. Pairing of inoculated males with clean moths of both sexes yielded higher rates of passive transmission of B. bassiana than Z. radicans, but there was no evidence for sexual transmission of either pathogen. Similarly, B. bassiana was more effectively transmitted from inoculated male moths to larvae foraging on whole plants. Single sporulating cadavers producing B. bassiana or Z. radicans conidia placed on plants infested with larvae resulted in a similar rate of transmission for both pathogens. However, an increase of the density of sporulating cadavers from one to three/plant increased Z. radicans transmission (greater than fourfold) but had no effect on B. bassiana transmission. Simultaneous inoculations of larvae with conidia of both fungi reduced the mortality induced by each pathogen, the reduction being most acute for B. bassiana-induced mortality. Inoculation of adults with both fungi showed that, at concentrations required for effective passive transmission to larvae, B. bassiana severely inhibited Z. radicans mycosis in adults. (C) 2001 Academic Press.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A descriptive study was developed in order to compare indoor and outdoor air contamination caused by fungi and particles in seven poultry units. Twenty eight air samples of 25 litters were collected through the impaction method on malt extract agar. Air sampling and particles concentration measurement were done in the interior and also outside premises of the poultries’ pavilions. Regarding the fungal load in the air, indoor concentration of mold was higher than outside air in six poultry units. Twenty eight species / genera of fungi were identified indoor, being Scopulariopsis brevicaulis (40.5%) the most commonly isolated species and Rhizopus sp. (30.0%) the most commonly isolated genus. Concerning outdoor, eighteen species/genera of fungi were isolated, being Scopulariopsis brevicaulis (62.6%) also the most isolated. All the poultry farms analyzed presented indoor fungi different from the ones identified outdoors. Regarding particles’ contamination, PM2.5, PM5.0 and PM10 had a statistically significant difference (Mann-Whitney U test) between the inside and outside of the pavilions, with the inside more contaminated (p=.006; p=.005; p=.005, respectively). The analyzed poultry units are potential reservoirs of substantial amounts of fungi and particles and could therefore free them in the atmospheric air. The developed study showed that indoor air was more contaminated than outdoors, and this can result in emission of potentially pathogenic fungi and particles via aerosols from poultry units to the environment, which may post a considerable risk to public health and contribute to environmental pollution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present study was carried out in two different areas of Province of Cordoba, Argentina, where there was a suspicious of endemic mycosis. The previous data were the presence of a clinical case of pulmonary cryptococcosis in one area (Alta Gracia) and the previous findings of a high incidence of coccidioidin and cryptococcin reactors in the population of the second one (Villa Dolores). In both areas soil samples for fungi were studied and Cryptococcus neoformans was found in 2/25 samples from Alta Gracia. In Villa Dolores Coccidioides immitis was isolated in 2/40 samples, and C. neoformans in 1/40 samples. Delayed hypersensitivity test with cryptococcin was determined in the population from Alta Gracia and it was found to be 5.3%. Positive cutaneous tests with coccidioidin (33.8%) and cryptococcin (31.9%) in Villa Dolores were obtained. With these findings two endemic areas of systemic mycoses in Cordoba, Argentina were delimited.