988 resultados para differential identification
Resumo:
Abstract : Adverse drug reactions (ADRs) are undesirable effects caused after administration of a single dose or prolonged administration of drug or result from the combination of two or more drugs. Idiosyncratic drug reaction (IDR) is an adverse reaction that does not occur in most patients treated with a drug and does not involve the therapeutic effect of the drug. IDRs are unpredictable and often life-threatening. Idiosyncratic reaction is dependent on drug chemical characteristics or individual immunological response. IDRs are a major problem for drug development because they are usually not detected during clinical trials. In this study we focused on IDRs of Nevirapine (NVP), which is a non-nucleoside reverse transcriptase inhibitor used for the treatment of Human Immunodeficiency Virus (HIV) infections. The use of NVP is limited by a relatively high incidence of skin rash. NVP also causes a rash in female Brown Norway (BN) rats, which we use as animal model for this study. Our hypothesis is that idiosyncratic skin reactions associated with NVP treatment are due to post-translational modifications of proteins (e.g., glutathionylation) detectable by MS. The main objective of this study was to identify the proteins that are targeted by a reactive metabolite of Nevirapine in the skin. The specific objectives derived from the general objective were as follow: 1) To implement the click chemistry approach to detect proteins modified by a reactive NVP-Alkyne (NVP-ALK) metabolite. The purpose of using NVP-ALK was to couple it with Biotin using cycloaddition Click Chemistry reaction. 2) To detect protein modification using Western blotting and Mass Spectrometry techniques, which is important to understand the mechanism of NVP induced toxicity. 3) To identify the proteins using MASCOT search engine for protein identification, by comparing obtained spectrum from Mass Spectrometry with theoretical spectrum to find a matching peptide sequence. 4) To test if the drug or drug metabolites can cause harmful effects, as the induction of oxidative stress in cells (via protein glutathionylation). Oxidative stress causes cell damage that mediates signals, which likely induces the immune response. The results showed that Nevirapine is metabolized to a reactive metabolite, which causes protein modification. The extracted protein from the treated BN rats matched 10% of keratin, which implies that keratin was the protein targeted by the NVP-ALK.
Resumo:
Background: Untreated Chlamydia trachomatis infections in women can result in disease sequelae such as salpingitis and pelvic inflammatory disease (PID), ultimately culminating in tubal occlusion and infertility. Whilst nucleic acid amplification tests can effectively diagnose uncomplicated lower genital tract (LGT) infections, they are not suitable for diagnosing upper genital tract (UGT) pathological sequelae. As a consequence, this study aimed to identify serological markers that can, with a high degree of sensitivity and specificity, discriminate between LGT infections and UGT pathology. Methods: Plasma was collected from 73 women with a history of LGT infection, UGT pathology due to C. trachomatis or no serological evidence of C. trachomatis infection. Western blotting was used to analyse antibody reactivity against extracted chlamydial proteins. Sensitivity and specificity of differential markers were also calculated. Results: Four antigens (CT157, CT423, CT727 and CT396) were identified and found to be capable of discriminating between the infection and disease sequelae state. Sensitivity and specificity calculations showed that our assay for diagnosing LGT infection had a sensitivity and specificity of 75% and 76% respectively, whilst the assay for identifying UGT pathology demonstrated 80% sensitivity and 86% specificity. Conclusions: The use of these assays could potentially facilitate earlier diagnoses in women suffering UGT pathology due to C. trachomatis.
Resumo:
Nuclear Factor Y (NF-Y) is a trimeric complex that binds to the CCAAT box, a ubiquitous eukaryotic promoter element. The three subunits NF-YA, NF-YB and NF-YC are represented by single genes in yeast and mammals. However, in model plant species (Arabidopsis and rice) multiple genes encode each subunit providing the impetus for the investigation of the NF-Y transcription factor family in wheat. A total of 37 NF-Y and Dr1 genes (10 NF-YA, 11 NF-YB, 14 NF-YC and 2 Dr1) in Triticum aestivum were identified in the global DNA databases by computational analysis in this study. Each of the wheat NF-Y subunit families could be further divided into 4-5 clades based on their conserved core region sequences. Several conserved motifs outside of the NF-Y core regions were also identified by comparison of NF-Y members from wheat, rice and Arabidopsis. Quantitative RT-PCR analysis revealed that some of the wheat NF-Y genes were expressed ubiquitously, while others were expressed in an organ-specific manner. In particular, each TaNF-Y subunit family had members that were expressed predominantly in the endosperm. The expression of nine NF-Y and two Dr1 genes in wheat leaves appeared to be responsive to drought stress. Three of these genes were up-regulated under drought conditions, indicating that these members of the NF-Y and Dr1 families are potentially involved in plant drought adaptation. The combined expression and phylogenetic analyses revealed that members within the same phylogenetic clade generally shared a similar expression profile. Organ-specific expression and differential response to drought indicate a plant-specific biological role for various members of this transcription factor family.
Resumo:
Two-photon fluorescence spectroscopy has been performed on rat skeletal muscles to investigate the effect of fixation processes on the micro-environments of the endogenous fluorophors in rat skeletal muscles. The two-photon fluorescence spectra measured for different fixation periods show a differential among those samples that were fixed in water, formalin and methanol, respectively. The results imply that two-photon fluorescence spectroscopy can be a potential technique for identification of healthy and malignant biological tissues.
Resumo:
Background: Cancer metastasis is the main contributor to breast cancer fatalities as women with the metastatic disease have poorer survival outcomes than women with localised breast cancers. There is an urgent need to develop appropriate prognostic methods to stratify patients based on the propensities of their cancers to metastasise. The insulin-like growth factor (IGF)-I:IGF binding protein (IGFBP):vitronectin complexes have been shown to stimulate changes in gene expression favouring increased breast cancer cell survival and a migratory phenotype. We therefore investigated the prognostic potential of these IGF- and extracellular matrix (ECM) interaction-induced proteins in the early identification of breast cancers with a propensity to metastasise using patient-derived tissue microarrays. Methods: Semiquantitative immunohistochemistry analyses were performed to compare the extracellular and subcellular distribution of IGF- and ECM-induced signalling proteins among matched normal, primary cancer and metastatic cancer formalin-fixed paraffin-embedded breast tissue samples. Results: The IGF- and ECM-induced signalling proteins were differentially expressed between subcellular and extracellular localisations. Vitronectin and IGFBP-5 immunoreactivity was lower while β1 integrin immunoreactivity was higher in the stroma surrounding metastatic cancer tissues, as compared to normal breast and primary cancer stromal tissues. Similarly, immunoreactive stratifin was found to be increased in the stroma of primary as well as metastatic breast tissues. Immunoreactive fibronectin and β1 integrin was found to be highly expressed at the leading edge of tumours. Based on the immunoreactivity it was apparent that the cell signalling proteins AKT1 and ERK1/2 shuffled from the nucleus to the cytoplasm with tumour progression. Conclusion: This is the first in-depth, compartmentalised analysis of the distribution of IGF- and ECM-induced signalling proteins in metastatic breast cancers. This study has provided insights into the changing pattern of cellular localisation and expression of IGF- and ECM-induced signalling proteins in different stages of breast cancer. The differential distribution of these biomarkers could provide important prognostic and predictive indicators that may assist the clinical management of breast disease, namely in the early identification of cancers with a propensity to metastasise, and/or recur following adjuvant therapy.
Resumo:
Glycerophospholipids (GPs) that differ in the relative position of the two fatty acyl chains on the glycerol backbone (i.e., sn-positional isomers) can have distinct physicochemical properties. The unambiguous assignment of acyl chain position to an individual GP represents a significant analytical challenge. Here we describe a workflow where phosphatidylcholines (PCs) are subjected to ESI for characterization by a combination of differential mobility spectrometry and MS (DMS-MS). When infused as a mixture, ions formed from silver adduction of each phospholipid isomer {e.g., [PC (16:0/18:1) + Ag]+ and [PC (18:1/16:0) + Ag]+} are transmitted through the DMS device at discrete compensation voltages. Varying their relative amounts allows facile and unambiguous assignment of the sn-positions of the fatty acyl chains for each isomer. Integration of the well-resolved ion populations provides a rapid method (< 3 min) for relative quantification of these lipid isomers. The DMS-MS results show excellent agreement with established, but time-consuming, enzymatic approaches and also provide superior accuracy to methods that rely on MS alone. The advantages of this DMS-MS method in identification and quantification of GP isomer populations is demonstrated by direct analysis of complex biological extracts without any prior fractionation.
Resumo:
Aberrant glycosylation of proteins is a hallmark of tumorigenesis, and could provide diagnostic value in cancer detection. Human saliva is an ideal source of glycoproteins due to the relatively high proportion of glycosylated proteins in the salivary proteome. Moreover, saliva collection is non-invasive, technically straightforward and the sample collection and storage is relatively easy. Although, differential glycosylation of proteins can be indicative of disease states, identification of differential glycosylation from clinical samples is not trivial. To facilitate salivary glycoprotein biomarker discovery, we optimised a method for differential glycoprotein enrichment from human saliva based on lectin magnetic bead arrays (saLeMBA). Selected lectins from distinct reactivity groups were used in the saLeMBA platform to enrich salivary glycoproteins from healthy volunteer saliva. The technical reproducibility of saLeMBA was analysed with LC-MS/MS to identify the glycosylated proteins enriched by each lectin. Our saLeMBA platform enabled robust glycoprotein enrichment in a glycoprotein- and lectin-specific manner consistent with known protein-specific glycan profiles. We demonstrated that saLeMBA is a reliable method to enrich and detect glycoproteins present in human saliva.
Resumo:
This study aimed to determine if pathotypic diversity of the sorghum rust pathogen, P. purpurea, exists in eastern Australia. A differential set of 10 Sorghum bicolor genotypes was used to identify four putative pathotypes from the 28 P. purpurea isolates that were tested. Pathotypes 1 and 3 were the most common, together comprising 85.7 % of the isolates tested, while pathotype 2 comprised 10.7 % of isolates, and pathotype 4 the remainder. Based on the limited number of isolates that were tested, there was evidence of geographic specialization amongst the pathotypes, with pathotype 1 not being found in north Queensland. This work has provided conclusive evidence that pathotypes of P. purpurea exist in the sorghum growing regions of Australia and has resulted in the development of a protocol for identifying pathotypes and screening breeding and experimental lines for resistance to these pathotypes. However, further investigations on the pathotypic diversity of P. purpurea and on the temporal and geographic distribution of these four as well as any additional undiscovered pathotypes are needed.
Resumo:
Background: Mango fruits contain a broad spectrum of phenolic compounds which impart potential health benefits; their biosynthesis is catalysed by enzymes in the phenylpropanoid-flavonoid (PF) pathway. The aim of this study was to reveal the variability in genes involved in the PF pathway in three different mango varieties Mangifera indica L., a member of the family Anacardiaceae: Kensington Pride (KP), Irwin (IW) and Nam Doc Mai (NDM) and to determine associations with gene expression and mango flavonoid profiles. Results: A close evolutionary relationship between mango genes and those from the woody species poplar of the Salicaceae family (Populus trichocarpa) and grape of the Vitaceae family (Vitis vinifera), was revealed through phylogenetic analysis of PF pathway genes. We discovered 145 SNPs in total within coding sequences with an average frequency of one SNP every 316bp. Variety IW had the highest SNP frequency (one SNP every 258bp) while KP and NDM had similar frequencies (one SNP every 369bp and 360bp, respectively). The position in the PF pathway appeared to influence the extent of genetic diversity of the encoded enzymes. The entry point enzymes phenylalanine lyase (PAL), cinnamate 4-mono-oxygenase (C4H) and chalcone synthase (CHS) had low levels of SNP diversity in their coding sequences, whereas anthocyanidin reductase (ANR) showed the highest SNP frequency followed by flavonoid 3'-hydroxylase (F3'H). Quantitative PCR revealed characteristic patterns of gene expression that differed between mango peel and flesh, and between varieties. Conclusions: The combination of mango expressed sequence tags and availability of well-established reference PF biosynthetic genes from other plant species allowed the identification of coding sequences of genes that may lead to the formation of important flavonoid compounds in mango fruits and facilitated characterisation of single nucleotide polymorphisms between varieties. We discovered an association between the extent of sequence variation and position in the pathway for up-stream genes. The high expression of PAL, C4H and CHS genes in mango peel compared to flesh is associated with high amounts of total phenolic contents in peels, which suggest that these genes have an influence on total flavonoid levels in mango fruit peel and flesh. In addition, the particularly high expression levels of ANR in KP and NDM peels compared to IW peel and the significant accumulation of its product epicatechin gallate (ECG) in those extracts reflects the rate-limiting role of ANR on ECG biosynthesis in mango. © 2015 Hoang et al.
Resumo:
During the past ten years, large-scale transcript analysis using microarrays has become a powerful tool to identify and predict functions for new genes. It allows simultaneous monitoring of the expression of thousands of genes and has become a routinely used tool in laboratories worldwide. Microarray analysis will, together with other functional genomics tools, take us closer to understanding the functions of all genes in genomes of living organisms. Flower development is a genetically regulated process which has mostly been studied in the traditional model species Arabidopsis thaliana, Antirrhinum majus and Petunia hybrida. The molecular mechanisms behind flower development in them are partly applicable in other plant systems. However, not all biological phenomena can be approached with just a few model systems. In order to understand and apply the knowledge to ecologically and economically important plants, other species also need to be studied. Sequencing of 17 000 ESTs from nine different cDNA libraries of the ornamental plant Gerbera hybrida made it possible to construct a cDNA microarray with 9000 probes. The probes of the microarray represent all different ESTs in the database. From the gerbera ESTs 20% were unique to gerbera while 373 were specific to the Asteraceae family of flowering plants. Gerbera has composite inflorescences with three different types of flowers that vary from each other morphologically. The marginal ray flowers are large, often pigmented and female, while the central disc flowers are smaller and more radially symmetrical perfect flowers. Intermediate trans flowers are similar to ray flowers but smaller in size. This feature together with the molecular tools applied to gerbera, make gerbera a unique system in comparison to the common model plants with only a single kind of flowers in their inflorescence. In the first part of this thesis, conditions for gerbera microarray analysis were optimised including experimental design, sample preparation and hybridization, as well as data analysis and verification. Moreover, in the first study, the flower and flower organ-specific genes were identified. After the reliability and reproducibility of the method were confirmed, the microarrays were utilized to investigate transcriptional differences between ray and disc flowers. This study revealed novel information about the morphological development as well as the transcriptional regulation of early stages of development in various flower types of gerbera. The most interesting finding was differential expression of MADS-box genes, suggesting the existence of flower type-specific regulatory complexes in the specification of different types of flowers. The gerbera microarray was further used to profile changes in expression during petal development. Gerbera ray flower petals are large, which makes them an ideal model to study organogenesis. Six different stages were compared and specifically analysed. Expression profiles of genes related to cell structure and growth implied that during stage two, cells divide, a process which is marked by expression of histones, cyclins and tubulins. Stage 4 was found to be a transition stage between cell division and expansion and by stage 6 cells had stopped division and instead underwent expansion. Interestingly, at the last analysed stage, stage 9, when cells did not grow any more, the highest number of upregulated genes was detected. The gerbera microarray is a fully-functioning tool for large-scale studies of flower development and correlation with real-time RT-PCR results show that it is also highly sensitive and reliable. Gene expression data presented here will be a source for gene expression mining or marker gene discovery in the future studies that will be performed in the Gerbera Laboratory. The publicly available data will also serve the plant research community world-wide.
Resumo:
The systemic autoinflammatory disorders are a group of rare diseases characterized by periodically recurring episodes of acute inflammation and a rise in serum acute phase proteins, but with no signs of autoimmunity. At present eight hereditary syndromes are categorized as autoinflammatory, although the definition has also occasionally been extended to other inflammatory disorders, such as Crohn s disease. One of the autoinflammatory disorders is the autosomally dominantly inherited tumour necrosis factor receptor-associated periodic syndrome (TRAPS), which is caused by mutations in the gene encoding the tumour necrosis factor type 1 receptor (TNFRSF1A). In patients of Nordic descent, cases of TRAPS and of three other hereditary fevers, hyperimmunoglobulinemia D with periodic fever syndrome (HIDS), chronic infantile neurologic, cutaneous and articular syndrome (CINCA) and familial cold autoinflammatory syndrome (FCAS), have been reported, TRAPS being the most common of the four. Clinical characteristics of TRAPS are recurrent attacks of high spiking fever, associated with inflammation of serosal membranes and joints, myalgia, migratory rash and conjunctivitis or periorbital cellulitis. Systemic AA amyloidosis may occur as a sequel of the systemic inflammation. The aim of this study was to investigate the genetic background of hereditary periodically occurring fever syndromes in Finnish patients, to explore the reliability of determining serum concentrations of soluble TNFRSF1A and metalloproteinase-induced TNFRSF1A shedding as helpful tools in differential diagnostics, as well as to study intracellular NF-κB signalling in an attempt to widen the knowledge of the pathomechanisms underlying TRAPS. Genomic sequencing revealed two novel TNFRSF1A mutations, F112I and C73R, in two Finnish families. F112I was the first TNFRSF1A mutation to be reported in the third extracellular cysteine-rich domain of the gene and C73R was the third novel mutation to be reported in a Finnish family, with only one other TNFRSF1A mutation having been reported in the Nordic countries. We also presented a differential diagnostic problem in a TRAPS patient, emphasizing for the clinician the importance of differential diagnostic vigiliance in dealing with rare hereditary disorders. The underlying genetic disease of the patient both served as a misleading factor, which possibly postponed arrival at the correct diagnosis, but may also have predisposed to the pathologic condition, which led to a critical state of the patient. Using a method of flow cytometric analysis modified for the use on fresh whole blood, we studied intracellular signalling pathways in three Finnish TRAPS families with the F112I, C73R and the previously reported C88Y mutations. Evaluation of TNF-induced phosphorylation of NF-κB and p38, revealed low phosphorylation profiles in nine out of ten TRAPS patients in comparison to healthy control subjects. This study shows that TRAPS is a diagnostic possibility in patients of Nordic descent, with symptoms of periodically recurring fever and inflammation of the serosa and joints. In particular in the case of a family history of febrile episodes, the possibility of TRAPS should be considered, if an etiology of autoimmune or infectious nature is excluded. The discovery of three different mutations in a population as small as the Finnish, reinforces the notion that the extracellular domain of TNFRSF1A is prone to be mutated at the entire stretch of its cysteine-rich domains and not only at a limited number of sites, suggesting the absence of a founder effect in TRAPS. This study also demonstrates the challenges of clinical work in differentiating the symptoms of rare genetic disorders from those of other pathologic conditions and presents the possibility of an autoinflammatory disorder as being the underlying cause of severe clinical complications. Furthermore, functional studies of fresh blood leukocytes show that TRAPS is often associated with a low NF-κB and p38 phosphorylation profile, although low phosphorylation levels are not a requirement for the development of TRAPS. The aberrant signalling would suggest that the hyperinflammatory phenotype of TRAPS is the result of compensatory NF-κB-mediated regulatory mechanisms triggered by a deficiency of the innate immune response.
Resumo:
We conducted an experiment to investigate the impact of sport scandal on consumer attitudes toward a range of sport stakeholders. We examined the effects of fans’ social identity (fan of scandalized team vs. fan of rival team), scandal severity (single perpetrator vs. multiple perpetrators) and the sponsor brand’s response to the scandal (sponsorship retention vs. termination) on consumers’ attitudes toward the implicated team, the scandal perpetrators, the sport, and sponsor brand. We find evidence of differential reactions to scandal reflecting social identity, such that fans support their own team despite increased scandal severity but negatively judge a rival team’s transgressions. Results suggest that where fans are concerned, sponsors may be better served to continue with a sponsorship following scandal than to terminate, even for some forms of severe scandal. However, termination may receive more positive evaluation from rival team fans; hence continuation of sponsorship needs to accompany a tempered approach.
Resumo:
The aim of this study was to identify and describe the types of errors in clinical reasoning that contribute to poor diagnostic performance at different levels of medical training and experience. Three cohorts of subjects, second- and fourth- (final) year medical students and a group of general practitioners, completed a set of clinical reasoning problems. The responses of those whose scores fell below the 25th centile were analysed to establish the stage of the clinical reasoning process - identification of relevant information, interpretation or hypothesis generation - at which most errors occurred and whether this was dependent on problem difficulty and level of medical experience. Results indicate that hypothesis errors decrease as expertise increases but that identification and interpretation errors increase. This may be due to inappropriate use of pattern recognition or to failure of the knowledge base. Furthermore, although hypothesis errors increased in line with problem difficulty, identification and interpretation errors decreased. A possible explanation is that as problem difficulty increases, subjects at all levels of expertise are less able to differentiate between relevant and irrelevant clinical features and so give equal consideration to all information contained within a case. It is concluded that the development of clinical reasoning in medical students throughout the course of their pre-clinical and clinical education may be enhanced by both an analysis of the clinical reasoning process and a specific focus on each of the stages at which errors commonly occur.
Resumo:
De novo mass spectrometric sequencing of two Conus peptides, Vi1359 and Vi1361, from the vermivorous cone snail Conus virgo, found off the southern Indian coast, is presented. The peptides, whose masses differ only by 2 Da, possess two disulfide bonds and an amidated C-terminus. Simple chemical modifications and enzymatic cleavage coupled with matrix assisted laser desorption ionization (MALDI) mass spectrometric analysis aided in establishing the sequences of Vi1359, ZCCITIPECCRI-NH2, and Vi1361, ZCCPTMPECCRI-NH2, Which differ only at residues 4 and 6 (Z = pyroglutamic acid). The presence of the pyroglutamyl residue at the N-terminus was unambiguously identified by chemical hydrolysis of the cyclic amide, followed by esterification. The presence of Ile residues in both the peptides was confirmed from high-energy collision induced dissociation (CID) studies, using the observation Of W-n- and d(n)-ions as a diagnostic. Differential cysteine labeling, in conjunction with MALDI-MS/MS, permitted establishment of disulfide connectivity in both peptides as Cys2-Cys9 and Cys3-Cys10. The cysteine pattern clearly reveals that the peptides belong to the class of T-superfamily conotoxins, in particular the T-1 superfamily.