993 resultados para developmental cycle
Resumo:
Leaf rust caused by Puccinia triticina is a serious disease of durum wheat (Triticum durum) worldwide. However, genetic and molecular mapping studies aimed at characterizing leaf rust resistance genes in durum wheat have been only recently undertaken. The Italian durum wheat cv. Creso shows a high level of resistance to P. triticina that has been considered durable and that appears to be due to a combination of a single dominant gene and one or more additional factors conferring partial resistance. In this study, the genetic basis of leaf rust resistance carried by Creso was investigated using 176 recombinant inbred lines (RILs) from the cross between the cv. Colosseo (C, leaf rust resistance donor) and Lloyd (L, susceptible parent). Colosseo is a cv. directly related to Creso with the leaf rust resistance phenotype inherited from Creso, and was considered as resistance donor because of its better adaptation to local (Emilia Romagna, Italy) cultivation environment. RILs have been artificially inoculated with a mixture of 16 Italian P. triticina isolates that were characterized for virulence to seedlings of 22 common wheat cv. Thatcher isolines each carrying a different leaf rust resistance gene, and for molecular genotypes at 15 simple sequence repeat (SSR) loci, in order to determine their specialization with regard to the host species. The characterization of the leaf rust isolates was conducted at the Cereal Disease Laboratory of the University of Minnesota (St. Paul, USA) (Chapter 2). A genetic linkage map was constructed using segregation data from the population of 176 RILs from the cross CL. A total of 662 loci, including 162 simple sequence repeats (SSRs) and 500 Diversity Arrays Technology markers (DArTs), were analyzed by means of the package EasyMap 0.1. The integrated SSR-DArT linkage map consisted of 554 loci (162 SSR and 392 DArT markers) grouped into 19 linkage blocks with an average marker density of 5.7 cM/marker. The final map spanned a total of 2022 cM, which correspond to a tetraploid genome (AABB) coverage of ca. 77% (Chapter 3). The RIL population was phenotyped for their resistance to leaf rust under artificial inoculation in 2006; the percentage of infected leaf area (LRS, leaf rust susceptibility) was evaluated at three stages through the disease developmental cycle and the area under disease progress curve (AUDPC) was then calculated. The response at the seedling stage (infection type, IT) was also investigated. QTL analysis was carried out by means of the Composite Interval Mapping method based on a selection of markers from the CL map. A major QTL (QLr.ubo-7B.2) for leaf rust resistance controlling both the seedling and the adult plant response, was mapped on the distal region of chromosome arm 7BL (deletion bin 7BL10-0.78-1.00), in a gene-dense region known to carry several genes/QTLs for resistance to rusts and other major cereal fungal diseases in wheat and barley. QLr.ubo-7B.2 was identified within a supporting interval of ca. 5 cM tightly associated with three SSR markers (Xbarc340.2, Xgwm146 e Xgwm344.2), and showed an R2 and an LOD peak value for the AUDPC equal to 72.9% an 44.5, respectively. Three additional minor QTLs were also detected (QLr.ubo-7B.1 on chr. 7BS; QLr.ubo-2A on chr. 2AL and QLr.ubo-3A on chr. 3AS) (Chapter 4). The presence of the major QTL (QLr.ubo-7B.2) was validated by a linkage disequilibrium (LD)-based test using field data from two different plant materials: i) a set of 62 advanced lines from multiple crosses involving Creso and his directly related resistance derivates Colosseo and Plinio, and ii) a panel of 164 elite durum wheat accessions representative of the major durum breeding program of the Mediterranean basin. Lines and accessions were phenotyped for leaf rust resistance under artificial inoculation in two different field trials carried out at Argelato (BO, Italy) in 2006 and 2007; the durum elite accessions were also evaluated in two additional field experiments in Obregon (Messico; 2007 and 2008) and in a green-house experiment (seedling resistance) at the Cereal Disease Laboratory (St. Paul, USA, 2008). The molecular characterization involved 14 SSR markers mapping on the 7BL chromosome region found to harbour the major QTL. Association analysis was then performed with a mixed-linear-model approach. Results confirmed the presence of a major QTL for leaf rust resistance, both at adult plant and at seedling stage, located between markers Xbarc340.2, Xgwm146 and Xgwm344.2, in an interval that coincides with the supporting interval (LOD-2) of QLr.ubo-7B.2 as resulted from the RIL QTL analysis. (Chapter 5). The identification and mapping of the major QTL associated to the durable leaf rust resistance carried by Creso, together with the identification of the associated SSR markers, will enhance the selection efficiency in durum wheat breeding programs (MAS, Marker Assisted Selection) and will accelerate the release of cvs. with durable resistance through marker-assisted pyramiding of the tagged resistance genes/QTLs most effective against wheat fungal pathogens.
Resumo:
L’agricoltura si trova ad affrontare una diminuzione della disponibilità d’acqua ed una crescente domanda della produzione di cereali per scopi alimentari. Sono perciò necessarie strategie di coltivazione innovative per migliorare la produttività e nuovi genotipi migliorati nell'efficienza dell’uso delle risorse in condizioni di siccità. Questi rappresentano gli obietti principali del progetto “DROPS” (Drought tolerant yielding Plants) all’interno del quale ha avuto luogo il mio progetto di Dottorato. La mia attività di ricerca è stata svolta come segue: 1. Caratterizzazione molecolare di un panel di188 accessioni di frumento duro con marcatori SSR e DaRT; 2. Esperimenti in serra su 100 accessioni del panel per valutare la Water-Use Efficiency (WUE) in sei repliche secondo un Alpha Lattice design; 3. Prove sul campo, effettuate secondo un Alpha Lattice design, in due stagioni di crescita: a. 2010/11, valutazione di 100 accessioni presso l’Azienda sperimentale dell'Università di Cadriano (BO); b. 2011/12, valutazione del panel completo in 3 ambienti, con due diversi regimi irrigui In entrambi gli anni, abbiamo valutato caratteri agronomici correlati con il ciclo di sviluppo, la resa di granella e sue componenti, nonché diversi fattori ambientali e del suolo. Per quanto riguarda WUE, abbiamo trovato differenze altamente significative tra accessioni; inoltre, cinque accessioni hanno mostrato elevati valori di WUE e cinque accessioni valori molto bassi di WUE in tutte e sei le repliche. Gli esperimenti di campo nelle stagioni 2011 e 2012 hanno evidenziato differenze altamente significative tra le accessioni del panel per la maggior parte dei caratteri analizzati, confermando inoltre che il panel di fiorisce entro una settimana. L'esperimento del secondo anno ci ha permesso osservare un significativa interazione Genotipo X Ambiente. Questi risultati saranno integrati con ulteriori analisi QTL, per identificare regioni cromosomiche coinvolte nel controllo genetico dei caratteri di interesse e verificare la stabilità dei QTL in diversi ambienti.
Resumo:
Lipid metabolism is of crucial importance for pathogens. Lipids serve as cellular building blocks, signalling molecules, energy stores, posttranslational modifiers, and pathogenesis factors. Parasites rely on a complex system of uptake and synthesis mechanisms to satisfy their lipid needs. The parameters of this system change dramatically as the parasite transits through the various stages of its life cycle. Here we discuss the tremendous recent advances that have been made in the understanding of the synthesis and uptake pathways for fatty acids and phospholipids in apicomplexan and kinetoplastid parasites, including Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania. Lipid synthesis differs in significant ways between parasites from both phyla and the human host. Parasites have acquired novel pathways through endosymbiosis, as in the case of the apicoplast, have dramatically reshaped substrate and product profiles, and have evolved specialized lipids to interact with or manipulate the host. These differences potentially provide opportunities for drug development. We outline the lipid pathways for key species in detail as they progress through the developmental cycle and highlight those that are of particular importance to the biology of the pathogens and/or are the most promising targets for parasite-specific treatment.
Resumo:
Family preservation has been criticized for implementing programs that are not theoretically founded. One result of this circumstance is a lack of information regarding processes and outcomes of family preservation services. The knowledge base of family preservation is thus rather limited at present and will remain limited unless theory is consistently integrated within individual programs. A model for conceptualizing how theoretical consistency may be implemented within programs is presented and applied to family preservation. It is also necessary for programs to establish theoretical consistency before theoretical diversity, both within individual and across multiple programs, in order to advance the field in meaningful ways. A developmental cycle of knowledge generation is presented and applied to family preservation.
Resumo:
The general objective of this work is to analyze the regulatory processes underlying flowering transition and inflorescence and flower development in grapevine. Most of these crucial developmental events take place within buds growing during two seasons in two consecutive years. During the first season, the shoot apical meristem within the bud differentiates all the basic elements of the shoot including flowering transition in lateral primordia and development of inflorescence primordia. These events practically end with bud dormancy. The second season, buds resume shoot growth associated to flower formation and development. In grapevine, the lateral meristems can give rise either to tendril or inflorescence primordia that are homologous organs. With this purpose, we performed global transcriptome analyses along the bud annual cycle and during inflorescence and tendril development. In addition, we approach the genomic analysis of the MIKC type MADS-box gene family in grapevine to identify all its members and assign them putative biological functions. Regarding buds developmental cycle, the results indicate that the main factors explaining the global gene expression differences were the processes of bud dormancy and active growth as well as stress responses. Non dormant buds exhibited up-regulation in functional categories typical of actively proliferating and growing cells (photosynthesis, cell cycle regulation, chromatin assembly) whereas in dormant ones the main functional categories up-regulated were associated to stress response pathways together with transcripts related to starch catabolism. Major transcriptional changes during the dormancy period were associated to the para/endodormancy, endo/ecodormancy and ecodormancy/bud break transitions. Global transcriptional analyses along tendril and inflorescence development suggested that these two homologous organs share a common transcriptional program related to cell proliferation functions. Both structures showed a progressive decrease in the expression of categories such as cell-cycle, auxin metabolism/signaling, DNA metabolism, chromatin assembly and a cluster of five transcripts belonging to the GROWTH-REGULATING FACTOR (GRF) transcription factor family, that are known to control cell proliferation in other species and determine the size of lateral organs. However, they also showed organ specific transcriptional programs that can be related to their differential organ structure and function. Tendrils showed higher transcription of genes related to photosynthesis, hormone signaling and secondary metabolism than inflorescences, while inflorescences have higher transcriptional activity for genes encoding transcription factors (especially those belonging to the MADS-box gene family). Further analysis along inflorescence development evidenced the relevance of additional functions likely related to processes of flower development such as fatty acid and lipid metabolism, jasmonate signaling and oxylipin biosynthesis. The transcriptional analyses performed highlighted the relevance of several groups of transcriptional regulators in the developmental processes studied. The expression profiles along bud development revealed significant differences for some MADS-box subfamilies in relation to other plant species, like the members of the FLC and SVP subfamilies suggesting new roles for these groups in grapevine. In this way, it was found that VvFLC2 and VvAGL15.1 could participate, together with some members of the SPL-L family, in dormancy regulation, as was shown for some of them in other woody plants. Similarly, the expression patterns of the VvFLC1, VvFUL, VvSOC1.1 (together with VvFT, VvMFT1 and VFL) genes could indicate that they play a role in flowering transition in grapevine, in parallel to their roles in other plant systems. The expression levels of VFL, the grapevine LEAFY homolog, could be crucial to specify the development of inflorescence and flower meristems instead of tendril meristems. MADS-box genes VvAP3.1 and 2, VvPI, VvAG1 and 3, VvSEP1-4, as well as VvBS1 and 2 are likely associated with the events of flower meristems and flower organs differentiation, while VvAP1 and VvFUL-L (together with VvSOC1.1, VvAGL6.2) could be involved on tendril development given their expression patterns. In addition, the biological function ofVvAP1 and VvTFL1A was analyzed using a gene silencing approach in transgenic grapevine plants. Our preliminary results suggested a possible role for both genes in the initiation and differentiation of tendrils. Finally, the genomic analysis of the MADS-box gene family in grapevine revealed differential features regarding number and expression pattern of genes putatively involved in the flowering transition process as compared to those involved in the specification of flower and fruit organ identity. Altogether, the results obtained allow identifying putative candidate genes and pathways regulating grapevine reproductive developmental processes paving the way to future experiments demonstrating specific gene biological functions. RESUMEN El objetivo general de este trabajo es analizar los procesos regulatorios subyacentes a la inducción floral así como al desarrollo de la inflorescencia y la flor en la vid. La mayor parte de estos eventos cruciales tienen lugar en las yemas a lo largo de dos estaciones de crecimiento consecutivas. Durante la primera estación, el meristemo apical contenido en la yema diferencia los elementos básicos del pámpano, lo cual incluye la inducción de la floración en los meristemos laterales y el subsiguiente desarrollo de primordios de inflorescencia. Estos procesos prácticamente cesan con la entrada en dormición de la yema. En la segunda estación, se reanuda el crecimiento del pámpano acompañado por la formación y desarrollo de las flores. En la vid, los meristemos laterales pueden dar lugar a primordios de inflorescencia o de zarcillo que son considerados órganos homólogos. Con este objetivo llevamos a cabo un estudio a nivel del transcriptoma de la yema a lo largo de su ciclo anual, así como a lo largo del desarrollo de la inflorescencia y del zarcillo. Además realizamos un análisis genómico de la familia MADS de factores transcripcionales (concretamente aquellos del tipo MIKC) para identificar todos sus miembros y tratar de asignarles posibles funciones biológicas. En cuanto al ciclo de desarrollo de la yema, los resultados indican que los principales factores que explican las diferencias globales en la expresión génica fueron los procesos de dormición de la yema y el crecimiento activo junto con las respuestas a diversos tipos de estrés. Las yemas no durmientes mostraron un incremento en la expresión de genes contenidos en categorías funcionales típicas de células en proliferación y crecimiento activo (como fotosíntesis, regulación del ciclo celular, ensamblaje de cromatina), mientras que en las yemas durmientes, las principales categorías funcionales activadas estaban asociadas a respuestas a estrés, así como con el catabolismo de almidón. Los mayores cambios observados a nivel de transcriptoma en la yema coincidieron con las transiciones de para/endodormición, endo/ecodormición y ecodormición/brotación. Los análisis transcripcionales globales a lo largo del desarrollo del zarcillo y de la inflorescencia sugirieron que estos dos órganos homólogos comparten un programa transcripcional común, relacionado con funciones de proliferación celular. Ambas estructuras mostraron un descenso progresivo en la expresión de genes pertenecientes a categorías funcionales como regulación del ciclo celular, metabolismo/señalización por auxinas, metabolismo de ADN, ensamblaje de cromatina y un grupo de cinco tránscritos pertenecientes a la familia de factores transcripcionales GROWTH-REGULATING FACTOR (GRF), que han sido asociados con el control de la proliferación celular y en determinar el tamaño de los órganos laterales en otras especies. Sin embargo, también pusieron de manifiesto programas transcripcionales que podrían estar relacionados con la diferente estructura y función de dichos órganos. Los zarcillos mostraron mayor actividad transcripcional de genes relacionados con fotosíntesis, señalización hormonal y metabolismo secundario que las inflorescencias, mientras que éstas presentaron mayor actividad transcripcional de genes codificantes de factores de transcripción (especialmente los pertenecientes a la familia MADS-box). Análisis adicionales a lo largo del desarrollo de la inflorescencia evidenciaron la relevancia de otras funciones posiblemente relacionadas con el desarrollo floral, como el metabolismo de lípidos y ácidos grasos, la señalización mediada por jasmonato y la biosíntesis de oxilipinas. Los análisis transcripcionales llevados a cabo pusieron de manifiesto la relevancia de varios grupos de factores transcripcionales en los procesos estudiados. Los perfiles de expresión estudiados a lo largo del desarrollo de la yema mostraron diferencias significativas en algunas de las subfamilias de genes MADS con respecto a otras especies vegetales, como las observadas en los miembros de las subfamilias FLC y SVP, lo cual sugiere que podrían desempeñar nuevas funciones en la vid. En este sentido, se encontró que los genes VvFLC2 y VvAGL15.1 podrían participar, junto con algunos miembros de la familia SPL-L, en la regulación de la dormición. De un modo similar, los patrones de expresión de los genes VvFLC1, VvFUL, VvSOC1.1 (junto con VvFT, VvMFT1 y VFL) podría indicar que desempeñan un papel en la regulación de la inducción de la floración en la vid, como se ha observado en otros sistemas vegetales. Los niveles de expresión de VFL, el homólogo en vid del gen LEAFY de A. thaliana podrían ser cruciales para la especificación del desarrollo de meristemos de inflorescencia y flor en lugar de meristemos de zarcillo. Los genes VvAP3.1 y 2, VvPI, VvAG1 y 3, VvSEP1-4, así como VvBS1 y 2 parecen estar asociados con los eventos de diferenciación de meristemos y órganos florales, mientras que VvAP1 y VvFUL-L (junto con VvSOC1.1 y VvAGL6.2) podrían estar implicados en el desarrollo del zarcillo dados sus patrones de expresión. Adicionalmente, se analizó la función biológica de los genes VvAP1 y VvTFL1A por medio de una estrategia de silenciamiento génico. Los datos preliminares sugieren un posible papel para ambos genes en la iniciación y diferenciación de los zarcillos. Finalmente, el análisis genómico de la familia MADS en vid evidenció diferencias con respecto a otras especies vegetales en cuanto a número de miembros y patrón de expresión en genes supuestamente implicados en la inducción de la floración, en comparación con aquellos relacionados con la especificación de identidad de órganos florales y desarrollo del fruto. En conjunto, los resultados obtenidos han permitido identificar posibles rutas y genes candidatos a participar en la regulación de los procesos de desarrollo reproductivo de la vid, sentando las bases de futuros experimentos encaminados a conocer la funciones biológicas de genes específicos.
Resumo:
We created a simulation based on experimental data from bacteriophage T7 that computes the developmental cycle of the wild-type phage and also of mutants that have an altered genome order. We used the simulation to compute the fitness of more than 105 mutants. We tested these computations by constructing and experimentally characterizing T7 mutants in which we repositioned gene 1, coding for T7 RNA polymerase. Computed protein synthesis rates for ectopic gene 1 strains were in moderate agreement with observed rates. Computed phage-doubling rates were close to observations for two of four strains, but significantly overestimated those of the other two. Computations indicate that the genome organization of wild-type T7 is nearly optimal for growth: only 2.8% of random genome permutations were computed to grow faster, the highest 31% faster, than wild type. Specific discrepancies between computations and observations suggest that a better understanding of the translation efficiency of individual mRNAs and the functions of qualitatively “nonessential” genes will be needed to improve the T7 simulation. In silico representations of biological systems can serve to assess and advance our understanding of the underlying biology. Iteration between computation, prediction, and observation should increase the rate at which biological hypotheses are formulated and tested.
Resumo:
The medically significant genus Chlamydia is a class of obligate intracellular bacterial pathogens that replicate within vacuoles in host eukaryotic cells termed inclusions. Chlamydia's developmental cycle involves two forms; an infectious extracellular form, known as an elementary body (EB), and a non-infectious form, known as the reticulate body (RB), that replicates inside the vacuoles of the host cells. The RB surface is covered in projections that are in intimate contact with the inclusion membrane. Late in the developmental cycle, these reticulate bodies differentiate into the elementary body form. In this paper, we present a hypothesis for the modulation of these developmental events involving the contact-dependent type III secretion (TTS) system. TTS surface projections mediate intimate contact between the RB and the inclusion membrane. Below a certain number of projections, detachment of the RB provides a signal for late differentiation of RB into EB. We use data and develop a mathematical model investigating this hypothesis. If the hypothesis proves to be accurate, then we have shown that increasing the number of inclusions per host cell will increase the number of infectious progeny EB until some optimal number of inclusions. For more inclusions than this optimum, the infectious yield is reduced because of spatial restrictions. We also predict that a reduction in the number of projections on the surface of the RB (and as early as possible during development) will significantly reduce the burst size of infectious EB particles. Many of the results predicted by the model can be tested experimentally and may lead to the identification of potential targets for drug design. © Society for Mathematical Biology 2006.
Resumo:
The growth of organs and whole plants depends on both cell growth and cell-cycle progression, but the interaction between both processes is poorly understood. In plants, the balance between growth and cell-cycle progression requires coordinated regulation of four different processes: macromolecular synthesis (cytoplasmic growth), turgor-driven cell-wall extension, mitotic cycle, and endocycle. Potential feedbacks between these processes include a cell-size checkpoint operating before DNA synthesis and a link between DNA contents and maximum cell size. In addition, key intercellular signals and growth regulatory genes appear to target at the same time cell-cycle and cell-growth functions. For example, auxin, gibberellin, and brassinosteroid all have parallel links to cell-cycle progression (through S-phase Cyclin D-CDK and the anaphase-promoting complex) and cell-wall functions (through cell-wall extensibility or microtubule dynamics). Another intercellular signal mediated by microtubule dynamics is the mechanical stress caused by growth of interconnected cells. Superimposed on developmental controls, sugar signalling through the TOR pathway has recently emerged as a central control point linking cytoplasmic growth, cell-cycle and cell-wall functions. Recent progress in quantitative imaging and computational modelling will facilitate analysis of the multiple interconnections between plant cell growth and cell cycle and ultimately will be required for the predictive manipulation of plant growth.
Resumo:
Background: The tomato (Solanum lycopersicum L.) plant is both an economically important food crop and an ideal dicot model to investigate various physiological phenomena not possible in Arabidopsis thaliana. Due to the great diversity of tomato cultivars used by the research community, it is often difficult to reliably compare phenotypes. The lack of tomato developmental mutants in a single genetic background prevents the stacking of mutations to facilitate analysis of double and multiple mutants, often required for elucidating developmental pathways. Results: We took advantage of the small size and rapid life cycle of the tomato cultivar Micro-Tom (MT) to create near-isogenic lines (NILs) by introgressing a suite of hormonal and photomorphogenetic mutations (altered sensitivity or endogenous levels of auxin, ethylene, abscisic acid, gibberellin, brassinosteroid, and light response) into this genetic background. To demonstrate the usefulness of this collection, we compared developmental traits between the produced NILs. All expected mutant phenotypes were expressed in the NILs. We also created NILs harboring the wild type alleles for dwarf, self-pruning and uniform fruit, which are mutations characteristic of MT. This amplified both the applications of the mutant collection presented here and of MT as a genetic model system. Conclusions: The community resource presented here is a useful toolkit for plant research, particularly for future studies in plant development, which will require the simultaneous observation of the effect of various hormones, signaling pathways and crosstalk.
Resumo:
In insects, exoskeleton (cuticle) formation at each molt cycle includes complex biochemical pathways wherein the laccase enzymes (EC 1.10.3.2) may have a key role. We identified an Amlac2 gene that encodes a laccase2 in the honey bee, Apis mellifera, and investigated its function in exoskeleton differentiation. The Amlac2 gene consists of nine exons resulting in an ORE of 2193 nucleotides. The deduced translation product is a 731 amino acid protein of 81.5 kDa and a pl of 6.05. Amlac2 is highly expressed in the integument of pharate adults, and the expression precedes the onset of cuticle pigmentation and the intensification of sclerotization. In accordance with the temporal sequence of exoskeleton differentiation from anterior to posterior direction, the levels of Amlac2 transcript increase earlier in the thoracic than in the abdominal integument. The gene expression lasts even after the bees emerge from brood cells and begin activities in the nest, but declines after the transition to foraging stage, suggesting that maturation of the exoskeleton is completed at this stage. Post-transcriptional knockdown of Amlac2 gene expression resulted in structural abnormalities in the exoskeleton and drastically affected adult eclosion. By setting a ligature between the thorax and abdomen of early pupae we could delay the increase in hemolymph ecdysteroid levels in the abdomen. This severely impaired the increase in Amlac2 transcript levels and also the differentiation of the abdominal exoskeleton. Taken together, these results indicate that Amlac2 expression is controlled by ecdysteroids and has a critical role in the differentiation of the adult exoskeleton of honey bees. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The biphasic life cycle, characterised by metamorphosis from a pelagic larva to a benthic adult, is found throughout the Metazoa. So is sexual reproduction via eggs and sperm. Amidst a tangled web of hypotheses on the origin of metazoan biphasy, current weight of opinion lies with a simple, larva-like holopelagic ancestor that independently settled multiple times to incorporate a benthic phase into the life cycle. This school of thought derives from Haeckel's interpretation of the gastrula as the recapitulation of a gastrean ancestor that evolved via selection on a simple, planktonic hollow ball-of-cells to develop the capacity to feed. We suggest that a paradigm shift is required to accomodate accumulating evidence of the genomic and developmental complexity of the metazoan last common ancestor, which was likely to have already possessed a biphasic lifecycle. Here we incorporate recent evidence from basal metazoans, in particular poriferans, to argue that a more parsimonious theory of the origin of biphasy is as a direct consequence of sexual reproduction in an ancestral benthic adult form. The metazoan embryo can itself be considered the precursor to a biphasic life cycle, wherein the embryo represents one phase and the adult another. Embryos in the water column are subject to natural selection for longeveity and dispersal, which sets them on the evolutionary trajectory towards the crown metazoan planktonic larvae. This alternate view considers the conserved use of regulatory genes in disparate metazoans as a reflection of both the complexity of the LCA and the antiquity of the biphasic life cycle. It does not require that extant embryogenesis, including gastrulation, recapitulates evolution.
Resumo:
The life cycle of Ixodes luciae was evaluated for five consecutive generations in the laboratory. Wild mice Calomys callosus and laboratory rats Rattus norvegicus were used as hosts for larvae and nymphs. For adult ticks, opossums Didelphis aurita were used as hosts. Off-host developmental periods were observed in an incubator at 27A degrees C and 95% RH. The life cycle of I. luciae lasted 95-97 days, excluding prefeeding periods. C. callosus, one of the natural host species for I. luciae immature stages, was shown to be much more suitable than the artificial host R. norvegicus. Significantly (P < 0.05), more larvae and nymphs successfully fed on C. callosus than on R. norvegicus. When tick-na < ve C. callosus were exposed to three consecutive larval infestations at 24-day intervals, recovery of engorged larvae were greater in the second and third infestations, indicating that previous infestations did not induce acquired resistance to ticks. Larval feeding period typically varied from 5 to 10 days on R. norvegicus, but was significantly (P < 0.05), longer on C. callosus (range, 7-34 days). The majority (71.7%) of I. luciae adult females successfully fed and oviposited after exposed to D. aurita. Mean engorged weight (581.9 mg; range, 237.1-796.0 mg) of these females were much higher than those previously reported for other New World Ixodes species. Our results are in accordance to the current literature that appoints opossums Didelphidae and small rodents (e.g., C. callosus) natural hosts for I. luciae immature and adult stages, respectively.
Resumo:
Lungfish of the tooth-plated lineage, both fossil and living, may be affected by alterations in the permanent tooth plates and associated jaw bones as they grow. In a few taxa, the unusual structures may be so common that they must be considered as normal for those species, or as a variation of the normal condition. In others the condition is rare, affecting only a few individuals. Variations, or anomalies, may appear in the growing tissues of the lungfish tooth plate at any time in the life cycle, although they usually appear early in development. Once the changes appear, they persist in the dentition. The altered structures include divided or intercalated ridges, short ridge anomaly, changes in the shape, number and position of cusps, pattern loss, and fused ridges or cusps. Criteria used to distinguish alteration from normal conditions are the incidence of the character in the population, the associated changes in the jaw bone, and the position of the altered structure in the tooth plate. The occurrence of similar changes across a wide range of different species suggests that they may have a genetic cause, especially when they are a rare occurrence in most taxa, but common enough to be a part of the normal variation in others. Prevalence of related anomalies throughout the history of the group suggests that dipnoans of the tooth-plated lineage are closely related, despite significant differences in morphology, microstructure, and function of the denfitions.
Resumo:
We have studied the gene expression, especially of the oncoproteins, and its regulation in schistosomes. Schistosomes have a complex life cycle with defined dimorphic lifestyle. The parasite are so far unique in biology in expressing oncogene products in their adult stage. In order to characterize the expression and developmental regulation, a lambda gt 11 cDNA library and lambda EMBL4 genomic DNA library of each growth stage of Schistosoma mansoni and S. japonicum was constructed, and was screened with various monoclonal antibodies against ongogene products. One positive plaque reacted to anti-p53 antibody (Ab-2, Oncogene Science, Inc.) was further analyzed. This fusion protein was about 120 KDa in molecular weights, and expressed as 1.4 Kb RNA in the adult stage. P53 gene is well-known as the negative regulator of the cell cicle, and the mutations in the gene are turning out to be the most common genetic alterations in human cancers. The comparison of the gene structure among species and stages were being conducted. Chromosome structures, C-band formation, and the results of in situ hybridization using the phage probe would be discussed.