883 resultados para developmental arrest
Resumo:
Chimeric mice in which lymphocytes are deficient in the Syk tyrosine kinase have been created. Compared with Syk-positive controls, mice with Syk -/- lymphocytes display substantial depletion of intraepithelial gamma delta T cells in the skin and gut, with developmental arrest occurring after antigen receptor gene rearrangement. In this dependence on Syk, subsets of intraepithelial gamma delta T cells are similar to B cells, but distinct from splenic gamma delta T cells that develop and expand in Syk-deficient mice. The characteristic associations of certain T-cell receptor V gamma/V delta gene rearrangements with specific epithelia are also disrupted by Syk deficiency.
Resumo:
The transcription factor GATA-1 recognizes a consensus motif present in regulatory regions of numerous erythroid-expressed genes. Mouse embryonic stem cells lacking GATA-1 cannot form mature red blood cells in vivo. In vitro differentiation of GATA-1- embryonic stem cells gives rise to a population of committed erythroid precursors that exhibit developmental arrest and death. We show here that the demise of GATA-1- erythroid cells is accompanied by several features characteristics of apoptosis. This process occurs despite normal expression of all known GATA target genes examined, including the erythropoietin receptor, and independent of detectable accumulation of the tumor suppressor protein p53. Thus, in addition to its established role in regulating genes that define the erythroid phenotype, GATA-1 also supports the viability of red cell precursors by suppressing apoptosis. These results illustrate the multifunctional nature of GATA-1 and suggest a mechanism by which other hematopoietic transcription factors may ensure the development of specific lineages.
Resumo:
In adult mammals, severe hypothermia leads to respiratory and cardiac arrest, followed by death. Neonatal rats and hamsters can survive much lower body temperatures and, upon artificial rewarming, spontaneously recover from respiratory arrest (autoresuscitate), typically suffering no long-term effects. To determine developmental and species differences in cold tolerance (defined here as the temperature of respiratory arrest) and its relation to the ability to autoresuscitate, we cooled neonatal and juvenile Sprague-Dawley rats and Syrian hamsters until respiration ceased, followed by rewarming. Ventilation and heartbeat were continuously monitored. In rats, cold tolerance did not change throughout development, however the ability to autoresuscitate from hypothermic respiratory arrest did (lost between postnatal days, P, 14 and 20), suggesting that the mechanisms for maintaining breathing at low temperatures was retained throughout development while those initiating breathing on rewarming were altered. Hamsters, however, showed increased cold tolerance until P26-28 and were able to autoresuscitate into adulthood (provided the heart kept beating throughout respiratory arrest). Also, hamsters were more cold tolerant than rats. We saw no evidence of gasping to initiate breathing following respiratory arrest, contributing to the hypothesis that hypothermic respiratory arrest does not lead to anoxia. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The developing cardiovascular system is known to operate normally in a hypoxic environment. However, the functional and ultrastructural recovery of embryonic/fetal hearts subjected to anoxia lasting as long as hypoxia/ischemia performed in adult animal models remains to be investigated. Isolated spontaneously beating hearts from Hamburger-Hamilton developmental stages 14 (14HH), 20HH, 24HH, and 27HH chick embryos were subjected in vitro to 30 or 60 min of anoxia followed by 60 min of reoxygenation. Morphological alterations and apoptosis were assessed histologically and by transmission electron microscopy. Anoxia provoked an initial tachycardia followed by bradycardia leading to complete cardiac arrest, except for in the youngest heart, which kept beating. Complete atrioventricular block appeared after 9.4 +/- 1.1, 1.7 +/- 0.2, and 1.6 +/- 0.3 min at stages 20HH, 24HH, and 27HH, respectively. At reoxygenation, sinoatrial activity resumed first in the form of irregular bursts, and one-to-one atrioventricular conduction resumed after 8, 17, and 35 min at stages 20HH, 24HH, and 27HH, respectively. Ventricular shortening recovered within 30 min except at stage 27HH. After 60 min of anoxia, stage 27HH hearts did not retrieve their baseline activity. Whatever the stage and anoxia duration, nuclear and mitochondrial swelling observed at the end of anoxia were reversible with no apoptosis. Thus the embryonic heart is able to fully recover from anoxia/reoxygenation although its anoxic tolerance declines with age. Changes in cellular homeostatic mechanisms rather than in energy metabolism may account for these developmental variations.
Resumo:
In the developing cerebellum, proliferation of granular neuroprogenitor (GNP) cells lasts until the early postnatal stages when terminal maturation of the cerebellar cortex occurs. GNPs are considered cell targets for neoplastic transformation, and disturbances in cerebellar GNP cell proliferation may contribute to the development of pediatric medulloblastoma. At the molecular level, proliferation of GNPs is regulated through an orchestrated action of the SHH, NOTCH, and WNT pathways, but the underlying mechanisms still need to be dissected. Here, we report that expression of the E2F1 transcription factor in rat GNPs is inversely correlated with cell proliferation rate during postnatal development, as opposed to its traditional SHH-dependent induction of cell cycle. Proliferation of GNPs peaked at postnatal day 3 (P3), with a subsequent continuing decrease in proliferation rates occurring until P12. Such gradual decline in proliferating neuroprogenitors paralleled the extent of cerebellum maturation confirmed by histological analysis with cresyl violet staining and temporal expression profiling of SHH, NOTCH2, and WNT4 genes. A time course analysis of E2F1 expression in GNPs revealed significantly increased levels at P12, correlating with decreased cell proliferation. Expression of the cell cycle inhibitor p18 (Ink4c) , a target of E2F1, was also significantly higher at P12. Conversely, increased E2F1 expression did not correlate with either SMAC/DIABLO and BCL2 expression profiles or apoptosis of cerebellar cells. Altogether, these results suggest that E2F1 may also be involved in the inhibition of GNP proliferation during rat postnatal development despite its conventional mitogenic effects.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We have identified a developmentally essential gene, UbcB, by insertional mutagenesis. The encoded protein (UBC1) shows very high amino acid sequence identity to ubiquitin-conjugating enzymes from other organisms, suggesting that UBC1 is involved in protein ubiquitination and possibly degradation during Dictyostelium development. Consistent with the homology of the UBC1 protein to UBCs, the developmental pattern of protein ubiquitination is altered in ubcB-null cells. ubcB-null cells are blocked in the ability to properly execute the developmental transition that occurs between the induction of postaggregative gene expression during mound formation and the induction of cell-type differentiation and subsequent morphogenesis. ubcB-null cells plated on agar form mounds with normal kinetics; however, they remain at this stage for ∼10 h before forming multiple tips and fingers that then arrest. Under other conditions, some of the fingers form migrating slugs, but no culmination is observed. In ubcB-null cells, postaggregative gene transcripts accumulate to very high levels and do not decrease significantly with time as they do in wild-type cells. Expression of cell-type-specific genes is very delayed, with the level of prespore-specific gene expression being significantly reduced compared with that in wild-type cells. lacZ reporter studies using developmentally regulated and cell-type-specific promoters suggest that ubcB-null cells show an unusually elevated level of staining of lacZ reporters expressed in anterior-like cells, a regulatory cell population found scattered throughout the aggregate, and reduced staining of a prespore reporter. ubcB-null cells in a chimeric organism containing predominantly wild-type cells are able to undergo terminal differentiation but show altered spatial localization. In contrast, in chimeras containing only a small fraction of wild-type cells, the mature fruiting body is very small and composed almost exclusively of wild-type cells, with the ubcB-null cells being present as a mass of cells located in extreme posterior of the developing organism. The amino acid sequence analysis of the UbcB open reading frame (ORF) and the analysis of the developmental phenotypes suggest that tip formation and subsequent development requires specific protein ubiquitination, and possibly degradation.
Resumo:
Rapport de stage présenté à la Faculté des Arts et Sciences en vue de l’obtention du grade de Maître des Sciences (M. Sc.) en Criminologie, Option Stage en Intervention
Resumo:
Rapport de stage présenté à la Faculté des Arts et Sciences en vue de l’obtention du grade de Maître des Sciences (M. Sc.) en Criminologie, Option Stage en Intervention
Resumo:
Since insect species are poikilothermic organisms, they generally exhibit different growth patterns depending on the temperature at which they develop. This factor is important in forensic entomology, especially for estimating postmortem interval (PMI) when it is based on the developmental time of the insects reared in decomposing bodies. This study aimed to estimate the rates of development, viability, and survival of immatures of Sarcophaga (Liopygia) ruficornis (Fabricius 1794) and Microcerella halli (Engel 1931) (Diptera: Sarcophagidae) reared in different temperatures: 10, 15, 20, 25, 30, and 35 ± 1 °C. Bovine raw ground meat was offered as food for all experimental groups, each consisting of four replicates, in the proportion of 2 g/larva. To measure the evolution of growth, ten specimens of each group were randomly chosen and weighed every 12 h, from initial feeding larva to pupae, and then discarded. Considering the records of weight gain, survival rates, and stability of growth rates, the range of optimum temperature for the development of S. (L.) ruficornis is between 20 and 35 °C, and that of M. halli is between 20 and 25 °C. For both species, the longest times of development were in the lowest temperatures. The survival rate at extreme temperatures (10 and 35 °C) was lower in both species. Biological data such as the ones obtained in this study are of great importance to achieve a more accurate estimate of the PMI.
Resumo:
Witches' broom disease (WBD) of cacao differs from other typical hemibiotrophic plant diseases by its unusually long biotrophic phase. Plant carbon sources have been proposed to regulate WBD developmental transitions; however, nothing is known about their availability at the plant-fungus interface, the apoplastic fluid of cacao. Data are provided supporting a role for the dynamics of soluble carbon in the apoplastic fluid in prompting the end of the biotrophic phase of infection. Carbon depletion and the consequent fungal sensing of starvation were identified as key signalling factors at the apoplast. MpNEP2, a fungal effector of host necrosis, was found to be up-regulated in an autophagic-like response to carbon starvation in vitro. In addition, the in vivo artificial manipulation of carbon availability in the apoplastic fluid considerably modulated both its expression and plant necrosis rate. Strikingly, infected cacao tissues accumulated intracellular hexoses, and showed stunted photosynthesis and the up-regulation of senescence markers immediately prior to the transition to the necrotrophic phase. These opposite findings of carbon depletion and accumulation in different host cell compartments are discussed within the frame of WBD development. A model is suggested to explain phase transition as a synergic outcome of fungal-related factors released upon sensing of extracellular carbon starvation, and an early senescence of infected tissues probably triggered by intracellular sugar accumulation.
Resumo:
The purpose of this study was to evaluate the possibility of producing circulatory arrest by occlusion of the pulmonary trunk as an alternative to the venous inflow occlusion through the left hemithorax. Eight healthy mongrel dogs were divided in two groups. Group I underwent 4 minutes of outflow occlusion and Group II was submitted to 8 minutes of circulatory arrest. Outflow occlusion was performed through left thoracotomy and pericardiotomy by passing a Rumel tourniquet around the pulmonary trunk. Physical examination, electrocardiography, echocardiography, blood gas analyses, hemodynamic, and oxygen transport variables were obtained before and after the procedure. The dogs from Group I did not have any clinical, electrocardiographic, echocardiographic, or hemo-dynamic abnormalities after anesthetic recover. In the Group II, only one dog survived, which had no clinical, electrocardiographic, or echocardiographic abnormalities. In this last dog, just after releasing the occlusion, it was detected increases in the following parameters: heart rate (HR), systolic, diastolic and mean arterial blood pressure (SAP; DAP; MAP), pulmonary artery pressure (PAP), pulmonary wedge pressure (PWP), central venous pressure (CVP), cardiac output (CO), systolic index (SI), cardiac index (CI), left and right ventricular stroke work (LVSW; RVSW), oxygen delivery index (DO2), oxygen consumption index (VO2), and oxygen extraction (O2 ext). Moreover, the oxygen content of arterial and mixed venous blood (CaO2; CvO2), and the arterial and mixed venous partial pressure of oxygen (PaO2; PvO2) were decreased 5 minutes after circulatory arrest. Outflow occlusion is a feasible surgical procedure for period of 4 minutes of circulatory arrest.
Resumo:
Background: The tomato (Solanum lycopersicum L.) plant is both an economically important food crop and an ideal dicot model to investigate various physiological phenomena not possible in Arabidopsis thaliana. Due to the great diversity of tomato cultivars used by the research community, it is often difficult to reliably compare phenotypes. The lack of tomato developmental mutants in a single genetic background prevents the stacking of mutations to facilitate analysis of double and multiple mutants, often required for elucidating developmental pathways. Results: We took advantage of the small size and rapid life cycle of the tomato cultivar Micro-Tom (MT) to create near-isogenic lines (NILs) by introgressing a suite of hormonal and photomorphogenetic mutations (altered sensitivity or endogenous levels of auxin, ethylene, abscisic acid, gibberellin, brassinosteroid, and light response) into this genetic background. To demonstrate the usefulness of this collection, we compared developmental traits between the produced NILs. All expected mutant phenotypes were expressed in the NILs. We also created NILs harboring the wild type alleles for dwarf, self-pruning and uniform fruit, which are mutations characteristic of MT. This amplified both the applications of the mutant collection presented here and of MT as a genetic model system. Conclusions: The community resource presented here is a useful toolkit for plant research, particularly for future studies in plant development, which will require the simultaneous observation of the effect of various hormones, signaling pathways and crosstalk.
Resumo:
Background: The oocyte ability to undergo successful fertilization, cleavage and embryonic development depends on meiotic maturation and developmental competence acquisition. In vitro maturation (IVM) protocols currently use eCG, hCG or a combination of both, the effect of these gonadotrophins during IVM and subsequent embryonic development is still controversial. Several media have been used for IVM of porcine oocytes: TCM199, Whitten's and NCSU23 have also been shown to support pig oocyte IVM. This study was designed to determine the effect of hormonal supplementation period and maturation media during in vitro maturation of pig oocytes (1) and subsequent embryonic development (2). Materials, Methods & Results: Oocytes with intact cumulus oophurus layers and homogeneous cytoplasm were collected from prebubertal gilts. IVM was subjected in NCSU23, TCM199 or Whitten's media supplemented with 10 IU/mL eCG and 10 IU/mL hCG for the first 24 or 48 h of IVM. In each replicate the oocytes were fixed every 4 h from 32 to 48 h IVM or the past 48 h after IVM, oocytes were fertilized in vitro in mTBM medium for six hours and cultured in NCSU23 medium for nine days. Cleavage, blastocyst and hatching rates were evaluated at 48 h (day 2), 168 h (day 7) and 216 h (day 9), respectively. The addition of eCG and hCG during the first 24 h IVM increased the proportion of oocytes that reached MII stage at 44 h of maturation in NCSU23 medium. This effect was also observed in Whitten medium at 44 and 48 h (P < 0.05). However, it was not observed in the TCM199 medium. No effect of maturation medium on oocyte nuclear maturation (P > 0.05) was observed in oocytes matured in the presence of eCG and hCG during the first 24 h IVM or during 48 h IVM. A progressive increase of maturation indexes was observed on oocytes matured with hormonal supplementation in Whitten media for 24 h. Higher indexes were obtained at 44 and 48 h. When NCSU23 media was used, no difference after 36 h of maturation was observed. The same result was observed in TCM199. A progressive increase of maturation indexes was observed on oocytes matured with hormonal supplementation for 48 h in Whitten media. Higher indexes were obtained in 36 and 40 h. When NCSU23 or TCM199 were used, no difference was observed. No effect of IVM media on the percentage of fertilized oocytes and polyspermic oocytes or number of spermatozoa per fertilized oocytes was observed. Also, no effect of IVM media on cleavage and blastocyst rates was seen. However, the proportion of hatched blastocysts was lower in NCSU23 compared to Whitten or TCM199. Discussion: Similar results were reported by Marques et al. [13], that it no differences between hormonal supplementation for 22 or 44 h were observed. Therefore, more studies are needed to elucidate the role of these hormones in nuclear in vitro maturation in pig oocytes. In conclusion, no effect of maturation media on meiotic progression was observed. However, the proportion of oocytes that reached metaphase II (MII) stage was higher when eCG + hCG were added for 24 h than 48 h mainly at the 44 h of maturation. In addition, no differences were observed in cleavage and blastocyst rates of the cultured embryos. However, embryos cultured in NCSU23 showed lower rates of hatching compared to other media. These results indicated no effect of maturation media on the fertilization and embryonic development even in the presence of cysteine, PFF and EGF, except for hatched embryos that these rates were lower in NCSU23.