825 resultados para decision support tool
Resumo:
PURPOSE: Risk-stratified guidelines can improve quality of care and cost-effectiveness, but their uptake in primary care has been limited. MeTree, a Web-based, patient-facing risk-assessment and clinical decision support tool, is designed to facilitate uptake of risk-stratified guidelines. METHODS: A hybrid implementation-effectiveness trial of three clinics (two intervention, one control). PARTICIPANTS: consentable nonadopted adults with upcoming appointments. PRIMARY OUTCOME: agreement between patient risk level and risk management for those meeting evidence-based criteria for increased-risk risk-management strategies (increased risk) and those who do not (average risk) before MeTree and after. MEASURES: chart abstraction was used to identify risk management related to colon, breast, and ovarian cancer, hereditary cancer, and thrombosis. RESULTS: Participants = 488, female = 284 (58.2%), white = 411 (85.7%), mean age = 58.7 (SD = 12.3). Agreement between risk management and risk level for all conditions for each participant, except for colon cancer, which was limited to those <50 years of age, was (i) 1.1% (N = 2/174) for the increased-risk group before MeTree and 16.1% (N = 28/174) after and (ii) 99.2% (N = 2,125/2,142) for the average-risk group before MeTree and 99.5% (N = 2,131/2,142) after. Of those receiving increased-risk risk-management strategies at baseline, 10.5% (N = 2/19) met criteria for increased risk. After MeTree, 80.7% (N = 46/57) met criteria. CONCLUSION: MeTree integration into primary care can improve uptake of risk-stratified guidelines and potentially reduce "overuse" and "underuse" of increased-risk services.Genet Med 18 10, 1020-1028.
Resumo:
A presente tese resulta de um trabalho de investigação cujo objectivo se centrou no problema de localização-distribuição (PLD) que pretende abordar, de forma integrada, duas actividades logísticas intimamente relacionadas: a localização de equipamentos e a distribuição de produtos. O PLD, nomeadamente a sua modelação matemática, tem sido estudado na literatura, dando origem a diversas aproximações que resultam de diferentes cenários reais. Importa portanto agrupar as diferentes variantes por forma a facilitar e potenciar a sua investigação. Após fazer uma revisão e propor uma taxonomia dos modelos de localização-distribuição, este trabalho foca-se na resolução de alguns modelos considerados como mais representativos. É feita assim a análise de dois dos PLDs mais básicos (os problema capacitados com procura nos nós e nos arcos), sendo apresentadas, para ambos, propostas de resolução. Posteriormente, é abordada a localização-distribuição de serviços semiobnóxios. Este tipo de serviços, ainda que seja necessário e indispensável para o público em geral, dada a sua natureza, exerce um efeito desagradável sobre as comunidades contíguas. Assim, aos critérios tipicamente utilizados na tomada de decisão sobre a localização destes serviços (habitualmente a minimização de custo) é necessário adicionar preocupações que reflectem a manutenção da qualidade de vida das regiões que sofrem o impacto do resultado da referida decisão. A abordagem da localização-distribuição de serviços semiobnóxios requer portanto uma análise multi-objectivo. Esta análise pode ser feita com recurso a dois métodos distintos: não interactivos e interactivos. Ambos são abordados nesta tese, com novas propostas, sendo o método interactivo proposto aplicável a outros problemas de programação inteira mista multi-objectivo. Por último, é desenvolvida uma ferramenta de apoio à decisão para os problemas abordados nesta tese, sendo apresentada a metodologia adoptada e as suas principais funcionalidades. A ferramenta desenvolvida tem grandes preocupações com a interface de utilizador, visto ser direccionada para decisores que tipicamente não têm conhecimentos sobre os modelos matemáticos subjacentes a este tipo de problemas.
Resumo:
Accurate data of the natural conditions and agricultural systems with a good spatial resolution are a key factor to tackle food insecurity in developing countries. A broad variety of approaches exists to achieve precise data and information about agriculture. One system, especially developed for smallholder agriculture in East Africa, is the Farm Management Handbook of Kenya. It was first published in 1982/83 and fully revised in 2012, now containing 7 volumes. The handbooks contain detailed information on climate, soils, suitable crops and soil care based on scientific research results of the last 30 years. The density of facts leads to time consuming extraction of all necessary information. In this study we analyse the user needs and necessary components of a system for decision support for smallholder farming in Kenya based on a geographical information system (GIS). Required data sources were identified, as well as essential functions of the system. We analysed the results of our survey conducted in 2012 and early 2013 among agricultural officers. The monitoring of user needs and the problem of non-adaptability of an agricultural information system on the level of extension officers in Kenya are the central objectives. The outcomes of the survey suggest the establishment of a decision support tool based on already available open source GIS components. The system should include functionalities to show general information for a specific location and should provide precise recommendations about suitable crops and management options to support agricultural guidance on farm level.
Resumo:
Much research has focused on desertification and land degradation assessments without putting sufficient emphasis on prevention and mitigation, although the concept of sustainable land management (SLM) is increasingly being acknowledged. A variety of SLM measures have already been applied at the local level, but they are rarely adequately recognised, evaluated, shared or used for decision support. WOCAT (World Overview of Technologies and Approaches) has developed an internationally recognised, standardised methodology to document and evaluate SLM technologies and approaches, including spatial distribution, allowing the sharing of SLM knowledge worldwide. The recent methodological integration into a participatory process allows now analysing and using this knowledge for decision support at the local and national level. The use of the WOCAT tools stimulates evaluation (self-evaluation as well as learning from comparing experiences) within SLM initiatives where all too often there is not only insufficient monitoring but also a lack of critical analysis. The comprehensive questionnaires and database system facilitate to document, evaluate and disseminate local experiences of SLM technologies and their implementation approaches. This evaluation process - in a team of experts and together with land users - greatly enhances understanding of the reasons behind successful (or failed) local practices. It has now been integrated into a new methodology for appraising and selecting SLM options. The methodology combines a local collective learning and decision approach with the use of the evaluated global best practices from WOCAT in a concise three step process: i) identifying land degradation and locally applied solutions in a stakeholder learning workshop; ii) assessing local solutions with the standardised WOCAT tool; iii) jointly selecting promising strategies for implementation with the help of a decision support tool. The methodology has been implemented in various countries and study sites around the world mainly within the FAO LADA (Land Degradation Assessment Project) and the EU-funded DESIRE project. Investments in SLM must be carefully assessed and planned on the basis of properly documented experiences and evaluated impacts and benefits: concerted efforts are needed and sufficient resources must be mobilised to tap the wealth of knowledge and learn from SLM successes.
Resumo:
The evaluation of geospatial data quality and trustworthiness presents a major challenge to geospatial data users when making a dataset selection decision. The research presented here therefore focused on defining and developing a GEO label – a decision support mechanism to assist data users in efficient and effective geospatial dataset selection on the basis of quality, trustworthiness and fitness for use. This thesis thus presents six phases of research and development conducted to: (a) identify the informational aspects upon which users rely when assessing geospatial dataset quality and trustworthiness; (2) elicit initial user views on the GEO label role in supporting dataset comparison and selection; (3) evaluate prototype label visualisations; (4) develop a Web service to support GEO label generation; (5) develop a prototype GEO label-based dataset discovery and intercomparison decision support tool; and (6) evaluate the prototype tool in a controlled human-subject study. The results of the studies revealed, and subsequently confirmed, eight geospatial data informational aspects that were considered important by users when evaluating geospatial dataset quality and trustworthiness, namely: producer information, producer comments, lineage information, compliance with standards, quantitative quality information, user feedback, expert reviews, and citations information. Following an iterative user-centred design (UCD) approach, it was established that the GEO label should visually summarise availability and allow interrogation of these key informational aspects. A Web service was developed to support generation of dynamic GEO label representations and integrated into a number of real-world GIS applications. The service was also utilised in the development of the GEO LINC tool – a GEO label-based dataset discovery and intercomparison decision support tool. The results of the final evaluation study indicated that (a) the GEO label effectively communicates the availability of dataset quality and trustworthiness information and (b) GEO LINC successfully facilitates ‘at a glance’ dataset intercomparison and fitness for purpose-based dataset selection.
Resumo:
The road and transport industry in Australia and overseas has come a long way to understanding the impact of road traffic noise on the urban environment. Most road authorities now have guidelines to help assess and manage the impact of road traffic noise on noise-sensitive areas and development. While several economic studies across Australia and overseas have tried to value the impact of noise on property prices, decision-makers investing in road traffic noise management strategies have relatively limited historic data and case studies to go on. The perceived success of a noise management strategy currently relies largely on community expectations at a given time, and is not necessarily based on the analysis of the costs and benefits, or the long-term viability and value to the community of the proposed treatment options. With changing trends in urban design, it is essential that the 'whole-of-life' costs and benefits of noise ameliorative treatment options and strategies be identified and made available for decisionmakers in future investment considerations. For this reason, CRC for Construction Innovation Australia funded a research project, Noise Management in Urban Environments to help decision-makers with future road traffic noise management investment decisions. RMIT University and the Queensland Department of Main Roads (QDMR) have conducted the research work, in collaboration with the Queensland Department of Public Works, ARUP Pty Ltd, and the Queensland University of Technology. The research has formed the basis for the development of a decision-support software tool, and helped collate technical and costing data for known noise amelioration treatment options. We intend that the decision support software tool (DST) should help an investment decision-maker to be better informed of suitable noise ameliorative treatment options on a project-by-project basis and identify likely costs and benefits associated with each of those options. This handbook has been prepared as a procedural guide for conducting a comparative assessment of noise ameliorative options. The handbook outlines the methodology and assumptions adopted in the decision-support framework for the investment decision-maker and user of the DST. The DST has been developed to provide an integrated user-friendly interface between road traffic noise modelling software, the relevant assessment criteria and the options analysis process. A user guide for the DST is incorporated in this handbook.
Resumo:
Knowledge modeling tools are software tools that follow a modeling approach to help developers in building a knowledge-based system. The purpose of this article is to show the advantages of using this type of tools in the development of complex knowledge-based decision support systems. In order to do so, the article describes the development of a system called SAIDA in the domain of hydrology with the help of the KSM modeling tool. SAIDA operates on real-time receiving data recorded by sensors (rainfall, water levels, flows, etc.). It follows a multi-agent architecture to interpret the data, predict the future behavior and recommend control actions. The system includes an advanced knowledge based architecture with multiple symbolic representation. KSM was especially useful to design and implement the complex knowledge based architecture in an efficient way.
Resumo:
To achieve sustainability in the area of transport we need to view the decision-making process as a whole and consider all the most important socio-economic and environmental aspects involved. Improvements in transport infrastructures have a positive impact on regional development and significant repercussions on the economy, as well as affecting a large number of ecological processes. This article presents a DSS to assess the territorial effects of new linear transport infrastructures based on the use of GIS. The TITIM ? Transport Infrastructure Territorial Impact Measurement ? GIS tool allows these effects to be calculated by evaluating the improvement in accessibility, loss of landscape connectivity, and the impact on other local territorial variables such as landscape quality, biodiversity and land-use quality. The TITIM GIS tool assesses these variables automatically, simply by entering the required inputs, and thus avoiding the manual reiteration and execution of these multiple processes. TITIM allows researchers to use their own GIS databases as inputs, in contrast with other tools that use official or predefined maps. The TITIM GIS-tool is tested by application to six HSR projects in the Spanish Strategic Transport and Infrastructure Plan 2005?2020 (PEIT). The tool creates all 65 possible combinations of these projects, which will be the real test scenarios. For each one, the tool calculates the accessibility improvement, the landscape connectivity loss, and the impact on the landscape, biodiversity and land-use quality. The results reveal which of the HSR projects causes the greatest benefit to the transport system, any potential synergies that exist, and help define a priority for implementing the infrastructures in the plan
Resumo:
Decision support systems (DSS) support business or organizational decision-making activities, which require the access to information that is internally stored in databases or data warehouses, and externally in the Web accessed by Information Retrieval (IR) or Question Answering (QA) systems. Graphical interfaces to query these sources of information ease to constrain dynamically query formulation based on user selections, but they present a lack of flexibility in query formulation, since the expressivity power is reduced to the user interface design. Natural language interfaces (NLI) are expected as the optimal solution. However, especially for non-expert users, a real natural communication is the most difficult to realize effectively. In this paper, we propose an NLI that improves the interaction between the user and the DSS by means of referencing previous questions or their answers (i.e. anaphora such as the pronoun reference in “What traits are affected by them?”), or by eliding parts of the question (i.e. ellipsis such as “And to glume colour?” after the question “Tell me the QTLs related to awn colour in wheat”). Moreover, in order to overcome one of the main problems of NLIs about the difficulty to adapt an NLI to a new domain, our proposal is based on ontologies that are obtained semi-automatically from a framework that allows the integration of internal and external, structured and unstructured information. Therefore, our proposal can interface with databases, data warehouses, QA and IR systems. Because of the high NL ambiguity of the resolution process, our proposal is presented as an authoring tool that helps the user to query efficiently in natural language. Finally, our proposal is tested on a DSS case scenario about Biotechnology and Agriculture, whose knowledge base is the CEREALAB database as internal structured data, and the Web (e.g. PubMed) as external unstructured information.
Resumo:
Traffic demand increases are pushing aging ground transportation infrastructures to their theoretical capacity. The result of this demand is traffic bottlenecks that are a major cause of delay on urban freeways. In addition, the queues associated with those bottlenecks increase the probability of a crash while adversely affecting environmental measures such as emissions and fuel consumption. With limited resources available for network expansion, traffic professionals have developed active traffic management systems (ATMS) in an attempt to mitigate the negative consequences of traffic bottlenecks. Among these ATMS strategies, variable speed limits (VSL) and ramp metering (RM) have been gaining international interests for their potential to improve safety, mobility, and environmental measures at freeway bottlenecks. Though previous studies have shown the tremendous potential of variable speed limit (VSL) and VSL paired with ramp metering (VSLRM) control, little guidance has been developed to assist decision makers in the planning phase of a congestion mitigation project that is considering VSL or VSLRM control. To address this need, this study has developed a comprehensive decision/deployment support tool for the application of VSL and VSLRM control in recurrently congested environments. The decision tool will assist practitioners in deciding the most appropriate control strategy at a candidate site, which candidate sites have the most potential to benefit from the suggested control strategy, and how to most effectively design the field deployment of the suggested control strategy at each implementation site. To do so, the tool is comprised of three key modules, (1) Decision Module, (2) Benefits Module, and (3) Deployment Guidelines Module. Each module uses commonly known traffic flow and geometric parameters as inputs to statistical models and empirically based procedures to provide guidance on the application of VSL and VSLRM at each candidate site. These models and procedures were developed from the outputs of simulated experiments, calibrated with field data. To demonstrate the application of the tool, a list of real-world candidate sites were selected from the Maryland State Highway Administration Mobility Report. Here, field data from each candidate site was input into the tool to illustrate the step-by-step process required for efficient planning of VSL or VSLRM control. The output of the tool includes the suggested control system at each site, a ranking of the sites based on the expected benefit-to-cost ratio, and guidelines on how to deploy the VSL signs, ramp meters, and detectors at the deployment site(s). This research has the potential to assist traffic engineers in the planning of VSL and VSLRM control, thus enhancing the procedure for allocating limited resources for mobility and safety improvements on highways plagued by recurrent congestion.
Resumo:
This document provides a review of international and national practices in investment decision support tools in road asset management. Efforts were concentrated on identifying analytic frameworks, evaluation methodologies and criteria adopted by current tools. Emphasis was also given to how current approaches support Triple Bottom Line decision-making. Benefit Cost Analysis and Multiple Criteria Analysis are principle methodologies in supporting decision-making in Road Asset Management. The complexity of the applications shows significant differences in international practices. There is continuing discussion amongst practitioners and researchers regarding to which one is more appropriate in supporting decision-making. It is suggested that the two approaches should be regarded as complementary instead of competitive means. Multiple Criteria Analysis may be particularly helpful in early stages of project development, say strategic planning. Benefit Cost Analysis is used most widely for project prioritisation and selecting the final project from amongst a set of alternatives. Benefit Cost Analysis approach is useful tool for investment decision-making from an economic perspective. An extension of the approach, which includes social and environmental externalities, is currently used in supporting Triple Bottom Line decision-making in the road sector. However, efforts should be given to several issues in the applications. First of all, there is a need to reach a degree of commonality on considering social and environmental externalities, which may be achieved by aggregating the best practices. At different decision-making level, the detail of consideration of the externalities should be different. It is intended to develop a generic framework to coordinate the range of existing practices. The standard framework will also be helpful in reducing double counting, which appears in some current practices. Cautions should also be given to the methods of determining the value of social and environmental externalities. A number of methods, such as market price, resource costs and Willingness to Pay, are found in the review. The use of unreasonable monetisation methods in some cases has discredited Benefit Cost Analysis in the eyes of decision makers and the public. Some social externalities, such as employment and regional economic impacts, are generally omitted in current practices. This is due to the lack of information and credible models. It may be appropriate to consider these externalities in qualitative forms in a Multiple Criteria Analysis. Consensus has been reached in considering noise and air pollution in international practices. However, Australia practices generally omitted these externalities. Equity is an important consideration in Road Asset Management. The considerations are either between regions, or social groups, such as income, age, gender, disable, etc. In current practice, there is not a well developed quantitative measure for equity issues. More research is needed to target this issue. Although Multiple Criteria Analysis has been used for decades, there is not a generally accepted framework in the choice of modelling methods and various externalities. The result is that different analysts are unlikely to reach consistent conclusions about a policy measure. In current practices, some favour using methods which are able to prioritise alternatives, such as Goal Programming, Goal Achievement Matrix, Analytic Hierarchy Process. The others just present various impacts to decision-makers to characterise the projects. Weighting and scoring system are critical in most Multiple Criteria Analysis. However, the processes of assessing weights and scores were criticised as highly arbitrary and subjective. It is essential that the process should be as transparent as possible. Obtaining weights and scores by consulting local communities is a common practice, but is likely to result in bias towards local interests. Interactive approach has the advantage in helping decision-makers elaborating their preferences. However, computation burden may result in lose of interests of decision-makers during the solution process of a large-scale problem, say a large state road network. Current practices tend to use cardinal or ordinal scales in measure in non-monetised externalities. Distorted valuations can occur where variables measured in physical units, are converted to scales. For example, decibels of noise converts to a scale of -4 to +4 with a linear transformation, the difference between 3 and 4 represents a far greater increase in discomfort to people than the increase from 0 to 1. It is suggested to assign different weights to individual score. Due to overlapped goals, the problem of double counting also appears in some of Multiple Criteria Analysis. The situation can be improved by carefully selecting and defining investment goals and criteria. Other issues, such as the treatment of time effect, incorporating risk and uncertainty, have been given scant attention in current practices. This report suggested establishing a common analytic framework to deal with these issues.
Resumo:
This report presents a summary of the research conducted by the research team of the CRC project 2002-005-C, “Decision support tools for concrete infrastructure rehabilitation”. The project scope, objectives, significance and innovation and the research methodology is outlined in the introduction, which is followed by five chapters covering different aspects of the research completed. Major findings of a review of literature conducted covering both use of fibre reinforced polymer composites in rehabilitation of concrete bridge structures and decision support frameworks in civil infrastructure asset management is presented in chapter two. Case study of development of a strengthening scheme for the “Tenthill Creek bridge” is covered in the third chapter, which summarises the capacity assessment, traditional strengthening solution and the innovative solution using FRP composites. The fourth chapter presents the methodology for development of a user guide covering selection of materials, design and application of FRP in strengthening of concrete structures, which were demonstrated using design examples. Fifth chapter presents the methodology developed for evaluating whole of life cycle costing of treatment options for concrete bridge structures. The decision support software tool developed to compare different treatment options based on reliability based whole of life cycle costing will be briefly described in this chapter as well. The report concludes with a summary of findings and recommendations for future research.
Resumo:
This paper describes the process adopted in developing an integrated decision support framework for planning of office building refurbishment projects, with specific emphasize on optimising rentable floor space, structural strengthening, residual life and sustainability. Expert opinion on the issues to be considered in a tool is being captured through the DELPHI process, which is currently ongoing. The methodology for development of the integrated tool will be validated through decisions taken during a case study project: refurbishment of CH1 building of Melbourne City Council, which will be followed through to completion by the research team. Current status of the CH1 planning will be presented in the context of the research project.
Resumo:
Simulation is widely used as a tool for analyzing business processes but is mostly focused on examining abstract steady-state situations. Such analyses are helpful for the initial design of a business process but are less suitable for operational decision making and continuous improvement. Here we describe a simulation system for operational decision support in the context of workflow management. To do this we exploit not only the workflow’s design, but also use logged data describing the system’s observed historic behavior, and incorporate information extracted about the current state of the workflow. Making use of actual data capturing the current state and historic information allows our simulations to accurately predict potential near-future behaviors for different scenarios. The approach is supported by a practical toolset which combines and extends the workflow management system YAWL and the process mining framework ProM.
Resumo:
As part of a decision making process, the controlling process in construction companies can be supported by computer application that provides faster and reliable decision. This paper discusses the development of a knowledge-based decision support system for controlling construction companies’ business performance. The knowledge-base was developed using questionnaire survey and case studies. A questionnaire survey was conducted to identify potential problems that can occur in construction companies as well as the source of the problems and their impact on companies’ performance. Case studies were used to identify and analyse various corrective actions. The result of the study shows that decision support system using knowledge-based management system improves the effectiveness and the efficiency of decision making process for selecting the most appropriate corrective action that can improve construction companies’ performance. The application, which had been developed in this research, was designed to support the process of controlling construction companies’ business performance and to assist young manager in selecting the most optimum corrective actions for the problems related to achieving companies’ objectives. This computer application can be used as a learning tool for identifying potential problems that a construction company faces and the most optimum corrective action.