962 resultados para data complexity
Resumo:
Aging is known to have a degrading influence on many structures and functions of the human sensorimotor system. The present work assessed aging-related changes in postural sway using fractal and complexity measures of the center of pressure (COP) dynamics with the hypothesis that complexity and fractality decreases in the older individuals. Older subjects (68 +/- 4 years) and young adult subjects (28 +/- 7 years) performed a quiet stance task (60 s) and a prolonged standing task (30 min) where subjects were allowed to move freely. Long-range correlations (fractality) of the data were estimated by the detrended fluctuation analysis (DFA); changes in entropy were estimated by the multi-scale entropy (MSE) measure. The DFA results showed that the fractal dimension was lower for the older subjects in comparison to the young adults but the fractal dimensions of both groups were not different from a 1/f noise, for time intervals between 10 and 600 s. The MSE analysis performed with the typically applied adjustment to the criterion distance showed a higher degree of complexity in the older subjects, which is inconsistent with the hypothesis that complexity in the human physiological system decreases with aging. The same MSE analysis performed without adjustment showed no differences between the groups. Taken all results together, the decrease in total postural sway and long-range correlations in older individuals are signs of an adaptation process reflecting the diminishing ability to generate adequate responses on a longer time scale.
Resumo:
This work proposes a method based on both preprocessing and data mining with the objective of identify harmonic current sources in residential consumers. In addition, this methodology can also be applied to identify linear and nonlinear loads. It should be emphasized that the entire database was obtained through laboratory essays, i.e., real data were acquired from residential loads. Thus, the residential system created in laboratory was fed by a configurable power source and in its output were placed the loads and the power quality analyzers (all measurements were stored in a microcomputer). So, the data were submitted to pre-processing, which was based on attribute selection techniques in order to minimize the complexity in identifying the loads. A newer database was generated maintaining only the attributes selected, thus, Artificial Neural Networks were trained to realized the identification of loads. In order to validate the methodology proposed, the loads were fed both under ideal conditions (without harmonics), but also by harmonic voltages within limits pre-established. These limits are in accordance with IEEE Std. 519-1992 and PRODIST (procedures to delivery energy employed by Brazilian`s utilities). The results obtained seek to validate the methodology proposed and furnish a method that can serve as alternative to conventional methods.
Resumo:
This essay is a trial on measuring complexity in a three-trophic level system by using a convex function of the informational entropy. The complexity measure defined here is compatible with the fact that real complexity lies between ordered and disordered states. Applying this measure to the data collected for two three-trophic level systems some hints about their organization are obtained. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Since their discovery 150 years ago, Neanderthals have been considered incapable of behavioural change and innovation. Traditional synchronic approaches to the study of Neanderthal behaviour have perpetuated this view and shaped our understanding of their lifeways and eventual extinction. In this thesis I implement an innovative diachronic approach to the analysis of Neanderthal faunal extraction, technology and symbolic behaviour as contained in the archaeological record of the critical period between 80,000 and 30,000 years BP. The thesis demonstrates patterns of change in Neanderthal behaviour which are at odds with traditional perspectives and which are consistent with an interpretation of increasing behavioural complexity over time, an idea that has been suggested but never thoroughly explored in Neanderthal archaeology. Demonstrating an increase in behavioural complexity in Neanderthals provides much needed new data with which to fuel the debate over the behavioural capacities of Neanderthals and the first appearance of Modern Human Behaviour in Europe. It supports the notion that Neanderthal populations were active agents of behavioural innovation prior to the arrival of Anatomically Modern Humans in Europe and, ultimately, that they produced an early Upper Palaeolithic cultural assemblage (the Châtelperronian) independent of modern humans. Overall, this thesis provides an initial step towards the development of a quantitative approach to measuring behavioural complexity which provides fresh insights into the cognitive and behavioural capabilities of Neanderthals.
Resumo:
This paper presents an analysis of dysfluencies in two oral tellings of a familiar children's story by a young boy with autism. Thurber & Tager-Flusberg (1993) postulate a lower degree of cognitive and communicative investment to explain a lower frequency of non-grammatical pauses observed in elicited narratives of children with autism in comparison to typically developing and intellectually disabled controls. we also found a very low frequency of non-grammatical pauses in our data, but indications of high engagement and cognitive and communicative investment. We point to a wider range of disfluencies as indicators of cognitive load, and show that the kind and location of dysfluencies produced may reveal which aspects of the narrative task are creating the greatest cognitive demand: here, mental state ascription, perspectivization, and adherence to story schema. This paper thus generates analytical options and hypotheses that can be explored further in a larger population of children with autism and typically developing controls.
Resumo:
This paper presents a new relative measure of signal complexity, referred to here as relative structural complexity, which is based on the matching pursuit (MP) decomposition. By relative, we refer to the fact that this new measure is highly dependent on the decomposition dictionary used by MP. The structural part of the definition points to the fact that this new measure is related to the structure, or composition, of the signal under analysis. After a formal definition, the proposed relative structural complexity measure is used in the analysis of newborn EEG. To do this, firstly, a time-frequency (TF) decomposition dictionary is specifically designed to compactly represent the newborn EEG seizure state using MP. We then show, through the analysis of synthetic and real newborn EEG data, that the relative structural complexity measure can indicate changes in EEG structure as it transitions between the two EEG states; namely seizure and background (non-seizure).
Resumo:
Data mining is the process to identify valid, implicit, previously unknown, potentially useful and understandable information from large databases. It is an important step in the process of knowledge discovery in databases, (Olaru & Wehenkel, 1999). In a data mining process, input data can be structured, seme-structured, or unstructured. Data can be in text, categorical or numerical values. One of the important characteristics of data mining is its ability to deal data with large volume, distributed, time variant, noisy, and high dimensionality. A large number of data mining algorithms have been developed for different applications. For example, association rules mining can be useful for market basket problems, clustering algorithms can be used to discover trends in unsupervised learning problems, classification algorithms can be applied in decision-making problems, and sequential and time series mining algorithms can be used in predicting events, fault detection, and other supervised learning problems (Vapnik, 1999). Classification is among the most important tasks in the data mining, particularly for data mining applications into engineering fields. Together with regression, classification is mainly for predictive modelling. So far, there have been a number of classification algorithms in practice. According to (Sebastiani, 2002), the main classification algorithms can be categorized as: decision tree and rule based approach such as C4.5 (Quinlan, 1996); probability methods such as Bayesian classifier (Lewis, 1998); on-line methods such as Winnow (Littlestone, 1988) and CVFDT (Hulten 2001), neural networks methods (Rumelhart, Hinton & Wiliams, 1986); example-based methods such as k-nearest neighbors (Duda & Hart, 1973), and SVM (Cortes & Vapnik, 1995). Other important techniques for classification tasks include Associative Classification (Liu et al, 1998) and Ensemble Classification (Tumer, 1996).
Resumo:
The brain is a complex system that, in the normal condition, has emergent properties like those associated with activity-dependent plasticity in learning and memory, and in pathological situations, manifests abnormal long-term phenomena like the epilepsies. Data from our laboratory and from the literature were classified qualitatively as sources of complexity and emergent properties from behavior to electrophysiological, cellular, molecular, and computational levels. We used such models as brainstem-dependent acute audiogenic seizures and forebrain-dependent kindled audiogenic seizures. Additionally we used chemical OF electrical experimental models of temporal lobe epilepsy that induce status epilepticus with behavioral, anatomical, and molecular sequelae such as spontaneous recurrent seizures and long-term plastic changes. Current Computational neuroscience tools will help the interpretation. storage, and sharing of the exponential growth of information derived from those studies. These strategies are considered solutions to deal with the complexity of brain pathologies such as the epilepsies. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
In the past century, the debate over whether or not density-dependent factors regulate populations has generally focused on changes in mean population density, ignoring the spatial variance around the mean as unimportant noise. In an attempt to provide a different framework for understanding population dynamics based on individual fitness, this paper discusses the crucial role of spatial variability itself on the stability of insect populations. The advantages of this method are the following: (1) it is founded on evolutionary principles rather than post hoc assumptions; (2) it erects hypotheses that can be tested; and (3) it links disparate ecological schools, including spatial dynamics, behavioral ecology, preference-performance, and plant apparency into an overall framework. At the core of this framework, habitat complexity governs insect spatial variance. which in turn determines population stability. First, the minimum risk distribution (MRD) is defined as the spatial distribution of individuals that results in the minimum number of premature deaths in a population given the distribution of mortality risk in the habitat (and, therefore, leading to maximized population growth). The greater the divergence of actual spatial patterns of individuals from the MRD, the greater the reduction of population growth and size from high, unstable levels. Then, based on extensive data from 29 populations of the processionary caterpillar, Ochrogaster lunifer, four steps are used to test the effect of habitat interference on population growth rates. (1) The costs (increasing the risk of scramble competition) and benefits (decreasing the risk of inverse density-dependent predation) of egg and larval aggregation are quantified. (2) These costs and benefits, along with the distribution of resources, are used to construct the MRD for each habitat. (3) The MRD is used as a benchmark against which the actual spatial pattern of individuals is compared. The degree of divergence of the actual spatial pattern from the MRD is quantified for each of the 29 habitats. (4) Finally, indices of habitat complexity are used to provide highly accurate predictions of spatial divergence from the MRD, showing that habitat interference reduces population growth rates from high, unstable levels. The reason for the divergence appears to be that high levels of background vegetation (vegetation other than host plants) interfere with female host-searching behavior. This leads to a spatial distribution of egg batches with high mortality risk, and therefore lower population growth. Knowledge of the MRD in other species should be a highly effective means of predicting trends in population dynamics. Species with high divergence between their actual spatial distribution and their MRD may display relatively stable dynamics at low population levels. In contrast, species with low divergence should experience high levels of intragenerational population growth leading to frequent habitat-wide outbreaks and unstable dynamics in the long term. Six hypotheses, erected under the framework of spatial interference, are discussed, and future tests are suggested.
Resumo:
We focus on mixtures of factor analyzers from the perspective of a method for model-based density estimation from high-dimensional data, and hence for the clustering of such data. This approach enables a normal mixture model to be fitted to a sample of n data points of dimension p, where p is large relative to n. The number of free parameters is controlled through the dimension of the latent factor space. By working in this reduced space, it allows a model for each component-covariance matrix with complexity lying between that of the isotropic and full covariance structure models. We shall illustrate the use of mixtures of factor analyzers in a practical example that considers the clustering of cell lines on the basis of gene expressions from microarray experiments. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Motion compensated frame interpolation (MCFI) is one of the most efficient solutions to generate side information (SI) in the context of distributed video coding. However, it creates SI with rather significant motion compensated errors for some frame regions while rather small for some other regions depending on the video content. In this paper, a low complexity Infra mode selection algorithm is proposed to select the most 'critical' blocks in the WZ frame and help the decoder with some reliable data for those blocks. For each block, the novel coding mode selection algorithm estimates the encoding rate for the Intra based and WZ coding modes and determines the best coding mode while maintaining a low encoder complexity. The proposed solution is evaluated in terms of rate-distortion performance with improvements up to 1.2 dB regarding a WZ coding mode only solution.
Resumo:
The study of electricity markets operation has been gaining an increasing importance in last years, as result of the new challenges that the electricity markets restructuring produced. This restructuring increased the competitiveness of the market, but with it its complexity. The growing complexity and unpredictability of the market’s evolution consequently increases the decision making difficulty. Therefore, the intervenient entities are forced to rethink their behaviour and market strategies. Currently, lots of information concerning electricity markets is available. These data, concerning innumerous regards of electricity markets operation, is accessible free of charge, and it is essential for understanding and suitably modelling electricity markets. This paper proposes a tool which is able to handle, store and dynamically update data. The development of the proposed tool is expected to be of great importance to improve the comprehension of electricity markets and the interactions among the involved entities.
Resumo:
Chapter in Book Proceedings with Peer Review First Iberian Conference, IbPRIA 2003, Puerto de Andratx, Mallorca, Spain, JUne 4-6, 2003. Proceedings
Resumo:
Given a set of mixed spectral (multispectral or hyperspectral) vectors, linear spectral mixture analysis, or linear unmixing, aims at estimating the number of reference substances, also called endmembers, their spectral signatures, and their abundance fractions. This paper presents a new method for unsupervised endmember extraction from hyperspectral data, termed vertex component analysis (VCA). The algorithm exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. In a series of experiments using simulated and real data, the VCA algorithm competes with state-of-the-art methods, with a computational complexity between one and two orders of magnitude lower than the best available method.
Resumo:
Consider the problem of designing an algorithm for acquiring sensor readings. Consider specifically the problem of obtaining an approximate representation of sensor readings where (i) sensor readings originate from different sensor nodes, (ii) the number of sensor nodes is very large, (iii) all sensor nodes are deployed in a small area (dense network) and (iv) all sensor nodes communicate over a communication medium where at most one node can transmit at a time (a single broadcast domain). We present an efficient algorithm for this problem, and our novel algorithm has two desired properties: (i) it obtains an interpolation based on all sensor readings and (ii) it is scalable, that is, its time-complexity is independent of the number of sensor nodes. Achieving these two properties is possible thanks to the close interlinking of the information processing algorithm, the communication system and a model of the physical world.