969 resultados para cytochrome C oxidase subunit 1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structure and spectrum of several models of the binuclear metal site in soluble CuA domains of cytochrome-c oxidase have been calculated by the use of an extended version of the complete neglect of differential overlap/spectroscopic method. The experimental spectra have two strong transitions of nearly equal intensity around 500 nm and a near-IR transition close to 800 nm. The model that best reproduces these features consists of a dimer of two blue (type 1) copper centers, in which each Cu atom replaces the missing imidazole on the other Cu atom. Thus, both Cu atoms have one cysteine sulfur atom and one imidazole nitrogen atom as ligands, and there are no bridging ligands but a direct Cu-Cu bond. According to the calculations, the two strong bands in the visible region originate from exciton coupling of the dipoles of the two copper monomers, and the near-IR band is a charge-transfer transition between the two Cu atoms. The known amino acid sequence has been used to construct a molecular model of the CuA site by the use of a template and energy minimization. In this model, the two ligand cysteine residues are in one turn of an alpha-helix, whereas one ligand histidine is in a loop following this helix and the other one is in a beta-strand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies on the steady state behavior of soluble cytochrome c oxidase are extensive. These studies have examined the influence of ionic strength and pH and may provide answers to questions such as the link between proton translocation and charge separation. The present study examined the influence of external bulk pH on ApH formation, biphasic kinetics, and steady state reduction of cytochromes c and a of cytochrome c oxidase in proteoliposomes. Bulk pH has an appreciable effect on ApH formation and steady state reduction levels of cytochromes c and 8. Bulk pH affected total Vmax and Km at the low affinity binding site of cytochrome c. This study also examined the influence of bovine serum albumin and free fatty acids on proton pumping activity in bovine heart proteoliposomes. Proton pumping activity decreased after treatment with BSA, and was subsequently reinstated after further treatment with FFA. Much study in the superfamily of haem/copper oxidases has recently been devoted to the bacterial oxidases. The present study has examined some protein composition characteristics and bioenergetic features of Bacillus subtilis cytochrome caa3 oxidase. Results provide evidence for the structural composition of the enzyme in relation to the covalently bound cytochrome c to the oxidas~. Bioenergetically, caa3 COV showed appreciable proton pumping activity. Steady state analysis of the caa3 COV showed significantly different cytochrome c and a reduction characteristics compared to the bovine enzyme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochrome c oxidase .inserted into proteoliposomes translocates protons with a stoichiometry of approx-, imately 0.4-0.6 H+/e- in the presence of valinomycin plus pottasium. The existance .ofsuchproton translocation is .supportedby experiments with lauryl maltoside which abolished the pulses but~~d not inhibit cyt. c binding .or oxidase turnover. Pulses with K3FeCN6 did not induce acidification further supporting vectorial proton transport by cyt ..aa3 . Upon lowering the ionic strength and pulsing with ferrocytochrome c, H+/eratios increased. This increase is attributed to scaler proton release consequent upon cyt.c-phospholipid binding. Oxygen pulses at low ionic strength however did not exhibit this large scaler increase in H+/e- ratios.A-small increase was observed upon .02 pul'sing at·low ionic strengt.h. This increase was KeN and, ,pcep sensitive and thus possibly due to a redox linked scaler deprotonation. Increases in the H+/e- ratio also occurred ifp~lses ,were performed in the presence of nonactin rather.than valinomycin. The fluorescent pH indicator pyranine was internally trapped inaa3 conta~ning "proteoliposomes. Internal alkalinization, as mon,itored by pyranine fluorescence leads to a of approx.imately 0.35 units, which is proportional to electron flux. This internal alkalinization was also DCCD sensitive, being inhibited by approximately 50%. This 50% inhibition of internal alkalinization supports the existance of vectorial proton transport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal structures of cytochrome c oxidase from both bovine and Paracoccus denitrificans reveal two putative proton input channels that connect the heme-copper center, where dioxygen is reduced, to the internal aqueous phase. In this work we have examined the role of these two channels, looking at the effects of site-directed mutations of residues observed in each of the channels of the cytochrome c oxidase from Rhodobacter sphaeroides. A photoelectric technique was used to monitor the time-resolved electrogenic proton transfer steps associated with the photo-induced reduction of the ferryl-oxo form of heme a3 (Fe4+ = O2−) to the oxidized form (Fe3+OH−). This redox step requires the delivery of a “chemical” H+ to protonate the reduced oxygen atom and is also coupled to proton pumping. It is found that mutations in the K channel (K362M and T359A) have virtually no effect on the ferryl-oxo-to-oxidized (F-to-Ox) transition, although steady-state turnover is severely limited. In contrast, electrogenic proton transfer at this step is strongly suppressed by mutations in the D channel. The results strongly suggest that the functional roles of the two channels are not the separate delivery of chemical or pumped protons, as proposed recently [Iwata, S., Ostermeier, C., Ludwig, B. & Michel, H. (1995) Nature (London) 376, 660–669]. The D channel is likely to be involved in the uptake of both “chemical” and “pumped” protons in the F-to-Ox transition, whereas the K channel is probably idle at this partial reaction and is likely to be used for loading the enzyme with protons at some earlier steps of the catalytic cycle. This conclusion agrees with different redox states of heme a3 in the K362M and E286Q mutants under aerobic steady-state turnover conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochrome c oxidase catalyzes the reduction of oxygen to water that is accompanied by pumping of four protons across the mitochondrial or bacterial membrane. Triggered by the results of recent x-ray crystallographic analyses, published data concerning the coupling of individual electron transfer steps to proton pumping are reanalyzed: Conversion of the conventional oxoferryl intermediate F to the fully oxidized form O is connected to pumping of only one proton. Most likely one proton is already pumped during the double reduction of O, and only three protons during conversion of the “peroxy” forms P to O via the oxoferryl form F. Based on the available structural, spectroscopic, and mutagenesis data, a detailed mechanistic model, carefully considering electrostatic interactions, is presented. In this model, each of the four reductions of heme a during the catalytic cycle is coupled to the uptake of one proton via the D-pathway. These protons, but never more than two, are temporarily stored in the regions of the heme a and a3 propionates and are driven to the outside (“pumped”) by electrostatic repulsion from protons entering the active site during turnover. The first proton is pumped by uptake of one proton via the K-pathway during reduction, the second and third proton during the P → F transition when the D-pathway and the active site become directly connected, and the fourth one upon conversion of F to O. Atomic structures are assigned to each intermediate including F′ with an alternative route to O.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The “peroxy” intermediate (P form) of bovine cytochrome c oxidase was prepared by reaction of the two-electron reduced mixed-valence CO complex with 18O2 after photolytic removal of CO. The water present in the reaction mixture was recovered and analyzed for 18O enrichment by mass spectrometry. It was found that approximately one oxygen atom (18O) per one equivalent of the P form was present in the bulk water. The data show that the oxygen–oxygen dioxygen bond is already broken in the P intermediate and that one oxygen atom can be readily released or exchanged with the oxygen of the solvent water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondria are affected by low temperature during seedling establishment in maize (Zea mays L.). We evaluated the associated changes in the mitochondrial properties of populations selected for high (C4-H) and low (C4-L) germination levels at 9.5°C. When seedlings of the two populations were grown at 1C (near the lower growth limit), the mitochondrial inner membranes of C4-H showed a higher percentage of 18-carbon unsaturated fatty acids, a higher fluidity, and a higher activity of cytochrome c oxidase. We found a positive relationship between these properties and the activity of a mitochondrial peroxidase, allowing C4-H to reduce lipid peroxidation relative to C4-L. The specific activity of reconstituted ATP/ADP translocase was positively associated with this peroxidase activity, suggesting that translocase activity is also affected by chilling. The level of oxidative stress and defense mechanisms are differently expressed in tolerant and susceptible populations when seedlings are grown at a temperature near the lower growth limit. Thus, the interaction between membrane lipids and cytochrome c oxidase seems to play a key role in maize chilling tolerance. Furthermore, the divergent-recurrent selection procedure apparently affects the allelic frequencies of genes controlling such an interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochrome c oxidase is a membrane-bound enzyme that catalyzes the four-electron reduction of oxygen to water. This highly exergonic reaction drives proton pumping across the membrane. One of the key questions associated with the function of cytochrome c oxidase is how the transfer of electrons and protons is coupled and how proton transfer is controlled by the enzyme. In this study we focus on the function of one of the proton transfer pathways of the R. sphaeroides enzyme, the so-called K-proton transfer pathway (containing a highly conserved Lys(I-362) residue), leading from the protein surface to the catalytic site. We have investigated the kinetics of the reaction of the reduced enzyme with oxygen in mutants of the enzyme in which a residue [Ser(I-299)] near the entry point of the pathway was modified with the use of site-directed mutagenesis. The results show that during the initial steps of oxygen reduction, electron transfer to the catalytic site (to form the “peroxy” state, Pr) requires charge compensation through the proton pathway, but no proton uptake from the bulk solution. The charge compensation is proposed to involve a movement of the K(I-362) side chain toward the binuclear center. Thus, in contrast to what has been assumed previously, the results indicate that the K-pathway is used during oxygen reduction and that K(I-362) is charged at pH ≈ 7.5. The movement of the Lys is proposed to regulate proton transfer by “shutting off” the protonic connectivity through the K-pathway after initiation of the O2 reduction chemistry. This “shutoff” prevents a short-circuit of the proton-pumping machinery of the enzyme during the subsequent reaction steps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An emerging and important site of action for nitric oxide (NO) within cells is the mitochondrial inner membrane, where NO binds to and inhibits members of the electron transport chain, complex III and cytochrome c oxidase. Although it is known that inhibition of cytochrome c oxidase by NO is competitive with O2, the mechanisms that underlie this phenomenon remain unclear, and the impact of both NO and O2 partitioning into biological membranes has not been considered. These properties are particularly interesting because physiological O2 tensions can vary widely, with NO having a greater inhibitory effect at low O2 tensions (<20 μM). In this study, we present evidence for a consumption of NO in mitochondrial membranes in the absence of substrate, in a nonsaturable process that is O2 dependent. This consumption modulates inhibition of cytochrome c oxidase by NO and is enhanced by the addition of exogenous membranes. From these data, it is evident that the partition of NO into mitochondrial membranes has a major impact on the ability of NO to control mitochondrial respiration. The implications of this conclusion are discussed in the context of mitochondrial lipid:protein ratios and the importance of NO as a regulator of respiration in pathophysiology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some intermediates in the reduction of O2 to water by cytochrome-c oxidase have been characterized by optical, Raman, and magnetic circular dichroism spectroscopy. The so-called "peroxy" (P) and "ferryl" (F) forms of the enzyme, which have been considered to be intermediates of the oxygen reaction, can be generated when the oxidized enzyme reacts with H2O2, or when the two-electron reduced ("CO mixed-valence") enzyme reacts with O2. The structures as well as the overall redox states of P and F have recently been controversial. We show here, using tris(2,2'-bipyridyl)ruthenium(II) as a photoinducible reductant, that one-electron reduction of P yields F, and that one-electron reduction of F yields the oxidized enzyme. This confirms that the overall redox states of P and F differ from the oxidized enzyme by two and one electron equivalents, respectively. The structures of the P and F states are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

40 Echinococcus isolates from sheep and cattle in Southern Brazil were genetically analysed in order to obtain further data on the presence of different taxa of the Echinococcus granulosus complex. Differentiation was done using a PCR technique and sequencing of mitochondrial cytochrome c oxidase subunit 1 (CO1). Most samples (38) could be allocated to the sheep strain (G1) of E. granulosus, while two samples belonged to E. ortleppi, previously known as cattle strain (G5) of E. granulosus. Due to the shorter prepatent period in dogs of the latter taxon, this records have important implications for the design of control measures in this endemic region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cystic echinococcosis (CE) is a globally parasitic zoonosis caused by larval stages of Echinococcus granulosus. This study investigated E. granulosus genotypes isolated from livestock and humans in the Golestan province, northern Iran, southeast of the Caspian sea, using partial sequencing data of the cytochrome c oxidase subunit 1 (cox1) and NADH dehydrogenase 1 (nad1) mitochondrial genes. Seventy E. granulosus isolates were collected from animals in slaughterhouses: 18 isolates from sheep, 40 from cattle, nine from camels, two from buffaloes and one from a goat, along with four human isolates (formalin-fixed, paraffin-embedded tissues) from CE patients of provincial hospitals. All isolates were successfully analysed by PCR amplification and sequencing. The sequence analysis found four E. granulosus genotypes among the 74 CE isolates: G1 (78.3%), G2 (2.7%), G3 (15%) and G6 (4%). The G1-G3 complex genotype was found in all of the sheep, goat, cattle and buffalo isolates. Among the nine camel isolates, the frequency of G1-G3 and G6 genotypes were 66.7% and 33.3%, respectively. All four human CE isolates belonged to E. granulosus sensu stricto. This study reports the first occurrence of the G2 genotype in cattle from Iran and confirms the previously reported G3 genotype in camels in the same country.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation presented to obtain the Master Degree in Molecular, Genetics and Biomedicine

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The identification of the genotypes of Echinococcus granulosus present in livestock and wild animals within regions endemic for cystic echinococcosis (CE) is epidemiologically important. Individual strains display different biological characteristics that contribute to outbreaks of CE and that must be taken into account in the design of intervention programs. In this study, samples of hydatid cysts due to E. granulosus were collected from alpacas (4) in Puno and pigs (8) in Ayacucho in Peru, an endemic region for CE. Polymerase chain reaction amplification and DNA sequencing of specific regions of the mitochondrial cytochrome C oxidase subunit 1 and NADH dehydrogenase subunit 1 genes confirmed the presence of a strain common to sheep, the G1 genotype, in alpacas. Two different strains of E. granulosus were identified in pigs: the G1 and the G7 genotypes. This is the first report of the G1 genotype of E. granulosus in alpacas in endemic regions of CE in Peru.