21 resultados para cycloplegia
Resumo:
This study aimed to determine the accuracy (and usability) of the Retinomax, a hand-held autorefractor, compared to measurements taken from hand-held retinoscopy (HHR) in a sample of normal 1-year-old children. The study was a method comparison set at four Community Child Health Clinics. Infants (n = 2079) of approximately 1 year of age were identified from birth/immunization records and their caregivers were contacted by mail. A total of 327 infants ranging in age from 46 weeks to 81 weeks (mean 61 weeks) participated in the study. The children underwent a full ophthalmic examination. Under cycloplegia, refraction was measured in each eye by streak retinoscopy (HHR) and then re-measured using the Retinomax autorefractor. Sphere, cylinder, axis of cylinder and spherical equivalent measurements were recorded for HHR and Retinomax instruments, and compared. Across the range of refractive errors measured, there was generally close agreement between the two examination methods, although the Retinomax consistently read around 0.3 D less hyperopic than HHR. Significantly more girls (72 infants, 47.7%), struggled during examination with the Retinomax than boys (52 infants, 29.5%) (P < 0.001). Agreement deteriorated between the two instruments if the patient struggled during the examination (P < 0.001). In general, the Retinomax would appear to be a useful screening instrument in early childhood. However, patient cooperation affects the accuracy of results and is an important con-sideration in determining whether this screening instrument should be adopted for measuring refractive errors in early infancy.
Resumo:
Measurements (autokeratometry, A-scan ultrasonography and video ophthalmophakometry) of ocular surface radii, axial separations and alignment were made in the horizontal meridian of nine emmetropes (aged 20-38 years) with relaxed (cycloplegia) and active accommodation (mean ± 95% confidence interval: 3.7 ± 1.1 D). The anterior chamber depth (-1.5 ± 0.3 D) and both crystalline lens surfaces (front 3.1 ± 0.8 D; rear 2.1 ± 0.6 D) contributed to dioptric vergence changes that accompany accommodation. Accommodation did not alter ocular surface alignment. Ocular misalignment in relaxed eyes is mainly because of eye rotation (5.7 ± 1.6° temporally) with small amounts of lens tilt (0.2 ± 0.8° temporally) and decentration (0.1 ± 0.1 mm nasally) but these results must be viewed with caution as we did not account for corneal asymmetry. Comparison of calculated and empirically derived coefficients (upon which ocular surface alignment calculations depend) revealed that negligible inherent errors arose from neglect of ocular surface asphericity, lens gradient refractive index properties, surface astigmatism, effects of pupil size and centration, assumed eye rotation axis position and use of linear equations for analysing Purkinje image shifts. © 2004 The College of Optometrists.
Resumo:
Purpose: To determine the validity of covering a corneal contact transducer probe with cling film as protection against the transmission of Creutzfeldt-Jakob disease (CJD). Methods: The anterior chamber depth, lens thickness and vitreous chamber depth of the right eyes of 10 subjects was recorded, under cycloplegia, with and without cling film covering over the transducer probe of a Storz Omega Compu-scan Biometric Ruler. Measurements were repeated on two occasions. Results: Cling film covering did not influence bias or repeatability. Although the 95% limits of agreement between measurements made with and without cling film covering tended to exceed the intrasessional repeatability, they did not exceed the intersessional repeatability of measurements taken without cling film. Conclusions: The results support the use of cling film as a disposable covering for corneal contact A-scan ultrasonography to avoid the risk of spreading CJD from one subject to another. © 2003 The College of Optometrists.
Resumo:
PURPOSE: To assess the accuracy of three wavefront analyzers versus a validated binocular open-view autorefractor in determining refractive error in non-cycloplegic eyes. METHODS: Eighty eyes were examined using the SRW-5000 open-view infrared autorefractor and, in randomized sequence, three wavefront analyzers: 1) OPD-Scan (NIDEK, Gamagori, Japan), 2) WASCA (Zeiss/Meditec, Jena, Germany), and 3) Allegretto (WaveLight Laser Technologies AG, Erlangen, Germany). Subjects were healthy adults (19 men and 21 women; mean age: 20.8 +/- 2.5 years). Refractive errors ranged from +1.5 to -9.75 diopters (D) (mean: +1.83 +/- 2.74 D) with up to 1.75 D cylinder (mean: 0.58 +/- 0.53 D). Three readings were collected per instrument by one examiner without anticholinergic agents. Refraction values were decomposed into vector components for analysis, resulting in mean spherical equivalent refraction (M) and J0 and J45 being vectors of cylindrical power at 0 degrees and 45 degrees, respectively. RESULTS: Positive correlation was observed between wavefront analyzers and the SRW-5000 for spherical equivalent refraction (OPD-Scan, r=0.959, P<.001; WASCA, r=0.981, P<.001; Allegretto, r=0.942, P<.001). Mean differences and limits of agreement showed more negative spherical equivalent refraction with wavefront analyzers (OPD-Scan, 0.406 +/- 0.768 D [range: 0.235 to 0.580 D] [P<.001]; WASCA, 0.511 +/- 0.550 D [range: 0.390 to 0.634 D] [P<.001]; and Allegretto, 0.434 +/- 0.904 D [range: 0.233 to 0.635 D] [P<.001]). A second analysis eliminating outliers showed the same trend but lower differences: OPD-Scan (n=75), 0.24 +/- 0.41 D (range: 0.15 to 0.34 D) (P<.001); WASCA (n=78), 0.46 +/- 0.47 D (range: 0.36 to 0.57 D) (P<.001); and Allegretto (n=77), 0.30 +/- 0.62 D (range: 0.16 to 0.44 D) (P<.001). No statistically significant differences were noted for J0 and J45. CONCLUSIONS: Wavefront analyzer refraction resulted in 0.30 D more myopia compared to SRW-5000 refraction in eyes without cycloplegia. This is the result of the accommodation excess attributable to instrument myopia. For the relatively low degrees of astigmatism in this study (<2.0 D), good agreement was noted between wavefront analyzers and the SRW-5000. Copyright (C) 2006 SLACK Incorporated
Resumo:
The aim of this study was to determine whether an ophthalmophakometric technique could offer a feasible means of investigating ocular component contributions to residual astigmatism in human eyes. Current opinion was gathered on the prevalence, magnitude and source of residual astigmatism. It emerged that a comprehensive evaluation of the astigmatic contributions of the eye's internal ocular surfaces and their respective axial separations (effectivity) had not been carried out to date. An ophthalmophakometric technique was developed to measure astigmatism arising from the internal ocular components. Procedures included the measurement of refractive error (infra-red autorefractometry), anterior corneal surface power (computerised video keratography), axial distances (A-scan ultrasonography) and the powers of the posterior corneal surface in addition to both surfaces of the crystalline lens (multi-meridional still flash ophthalmophakometry). Computing schemes were developed to yield the required biometric data. These included (1) calculation of crystalline lens surface powers in the absence of Purkinje images arising from its anterior surface, (2) application of meridional analysis to derive spherocylindrical surface powers from notional powers calculated along four pre-selected meridians, (3) application of astigmatic decomposition and vergence analysis to calculate contributions to residual astigmatism of ocular components with obliquely related cylinder axes, (4) calculation of the effect of random experimental errors on the calculated ocular component data. A complete set of biometric measurements were taken from both eyes of 66 undergraduate students. Effectivity due to corneal thickness made the smallest cylinder power contribution (up to 0.25DC) to residual astigmatism followed by contributions of the anterior chamber depth (up to 0.50DC) and crystalline lens thickness (up to 1.00DC). In each case astigmatic contributions were predominantly direct. More astigmatism arose from the posterior corneal surface (up to 1.00DC) and both crystalline lens surfaces (up to 2.50DC). The astigmatic contributions of the posterior corneal and lens surfaces were found to be predominantly inverse whilst direct astigmatism arose from the anterior lens surface. Very similar results were found for right versus left eyes and males versus females. Repeatability was assessed on 20 individuals. The ophthalmophakometric method was found to be prone to considerable accumulated experimental errors. However, these errors are random in nature so that group averaged data were found to be reasonably repeatable. A further confirmatory study was carried out on 10 individuals which demonstrated that biometric measurements made with and without cycloplegia did not differ significantly.
Resumo:
PURPOSE. We explored risk factors for myopia in 12- to 13-year-old children in Northern Ireland (NI). METHODS. Stratified random sampling was performed to obtain representation of schools and children. Cycloplegia was achieved using cyclopentolate hydrochloride 1%. Distance autorefraction was measured using the Shin-Nippon SRW-5000 device. Height and weight were measured. Parents and children completed a questionnaire, including questions on parental history of myopia, sociodemographic factors, childhood levels of near vision, and physical activity to identify potential risk factors for myopia. Myopia was defined as spherical equivalent ≤0.50 diopters (D) in either eye. RESULTS. Data from 661 white children aged 12-to 13-years showed that regular physical activity was associated with a lower estimated prevalence of myopia compared to sedentary lifestyles (odds ratio [OR] = 0.46 adjusted for age, sex, deprivation score, family size, school type, urbanicity; 95% confidence interval [CI], 0.23–0.90; P for trend = 0.027). The odds of myopia were more than 2.5 times higher among children attending academically-selective schools (adjusted OR = 2.66; 95% CI, 1.48–4.78) compared to nonacademically-selective schools. There was no evidence of an effect of urban versus nonurban environment on the odds of myopia. Compared to children with no myopic parents, children with one or both parents being myopic were 2.91 times (95% CI, 1.54–5.52) and 7.79 times (95% CI, 2.93– 20.67) more likely to have myopia, respectively. CONCLUSIONS. In NI children, parental history of myopia and type of schooling are important determinants of myopia. The association between myopia and an environmental factor, such as physical activity levels, may provide insight into preventive strategies.