903 resultados para cutting force
Resumo:
介绍了几种自行研制开发的螺旋面钻尖刃磨机床。这些刃磨机结构简单 ,成本低 ,操作容易。在这些刃磨机上所刃磨出的螺旋面钻尖与普通钻头钻尖相比可实现自动定心功能 ,且钻削轴向力小。
Resumo:
提出一种采用附加测量机构直接测量并联机床运动平台位姿精度的方法。其基本思想是根据运动平台的运动特性在固定平台和运动平台之间增设附加测量机构,当运动平台运动时带动测量机构运动,通过安装在测量机构上的传感器测得广义坐标参量, 经运动学建模即可得到运动平台的位姿。当测量机构位姿正解求解速度满足实时控制要求时,利用该反馈信息对机床进行实时精度补偿和控制。基于上述思想建立的并联机床位姿测量系统可部分排除机床切削力变形和运动副间隙等误差, 从而提高机床的位姿测量精度。以一种五坐标并联机床为例,介绍采用附加测量机构直接测量运动平台位姿精度的建模方法。其中, 测量机构的综合十分重要。测量机构的组成决定了运动学模型的复杂程度, 即决定了运动学模型的计算效率。
Resumo:
Os estudos de maquinabilidade de biomateriais e outros materiais aplicados na área médica são extensos. Todavia, muitos destes estudos recorrem a modelos de geometria regular e operações elementares de maquinagem. Relativamente a estas, os estudos académicos atualmente disponíveis mostram que a tecnologia preferencial é o torneamento, opção que se fundamenta na simplicidade de análise (corte ortogonal). Saliente-se ainda que, neste contexto, a liga de titânio Ti-6Al-4V constitui o biomaterial mais utilizado. Numa perspetiva complementar, refira-se que as publicações científicas evidenciam que a informação disponível sobre a fresagem Ti-6Al-4V não é muito extensa e a do Co-28Cr-6Mo é quase inexistente. A presente dissertação enquadra-se neste domínio e representa mais uma contribuição para o estudo da maquinabilidade das ligas de Titânio e de crómio-cobalto. A aplicação de operações de maquinagem complexas, através do recurso a programas informáticos de fabrico assistido por computador (CAM), em geometrias complexas, como é o caso das próteses femorais anatómicas, e o estudo comparativo da maquinabilidade das ligas Co-28Cr-6Mo e Ti-6Al-4V, constituem os objetivos fundamentais deste trabalho de doutoramento. Neste trabalho aborda-se a problemática da maquinabilidade das ligas metálicas usadas nos implantes ortopédicos, nomeadamente as ligas de titânio, de crómiocobalto e os aços Inoxidáveis. Efetua-se ainda um estudo da maquinagem de uma prótese femoral com uma forma geométrica complexa, onde as operações de corte foram geradas recorrendo às tecnologias de fabrico assistido por computador (CAD/CAM). Posteriormente, procedeu-se ao estudo da maquinabilidade das duas ligas usadas neste trabalho, dando uma atenção particular à determinação das forças de corte para diferentes velocidades de corte. Para além da monitorização da evolução da força de corte, o desgaste das ferramentas, a dureza e a rugosidade foram avaliadas, em função da velocidade de corte imposta. Por fim, com base nas estratégias de maquinagem adotadas, analisa-se a maquinabilidade e selecionam-se os parâmetros de corte mais favoráveis para as ligas de Titânio e Crómio-cobalto. Os resultados obtidos mostram que a liga de crómio-cobalto induz maior valor de força de corte do que a liga de titânio. Observa-se um aumento progressivo das forças de corte quando a velocidade de corte aumenta, até atingir o valor máximo para a velocidade de corte de 80m/min, após a qual, a força de corte tende a diminuir. Apesar do fabricante das ferramentas recomendar a velocidade de corte de 50 m/min para ambos os materiais, conclui-se que a velocidade de corte de 65 m/min induz o mesmo desgaste na ferramenta de corte no caso da liga de titânio, e menor desgaste no caso da liga de crómio-cobalto.
Resumo:
The implications of whether new surfaces in cutting are formed just by plastic flow past the tool or by some fracturelike separation process involving significant surface work, are discussed. Oblique metalcutting is investigated using the ideas contained in a new algebraic model for the orthogonal machining of metals (Atkins, A. G., 2003, "Modeling Metalcutting Using Modern Ductile Fracture Mechanics: Quantitative Explanations for Some Longstanding Problems," Int. J. Mech. Sci., 45, pp. 373–396) in which significant surface work (ductile fracture toughnesses) is incorporated. The model is able to predict explicit material-dependent primary shear plane angles and provides explanations for a variety of well-known effects in cutting, such as the reduction of at small uncut chip thicknesses; the quasilinear plots of cutting force versus depth of cut; the existence of a positive force intercept in such plots; why, in the size-effect regime of machining, anomalously high values of yield stress are determined; and why finite element method simulations of cutting have to employ a "separation criterion" at the tool tip. Predictions from the new analysis for oblique cutting (including an investigation of Stabler's rule for the relation between the chip flow velocity angle C and the angle of blade inclination i) compare consistently and favorably with experimental results.
Resumo:
Throughout the industrial processes of sheet metal manufacturing and refining, shear cutting is widely used for its speed and cost advantages over competing cutting methods. Industrial shears may include some force measurement possibilities, but the force is most likely influenced by friction losses between shear tool and the point of measurement, and are in general not showing the actual force applied to the sheet. Well defined shears and accurate measurements of force and shear tool position are important for understanding the influence of shear parameters. Accurate experimental data are also necessary for calibration of numerical shear models. Here, a dedicated laboratory set-up with well defined geometry and movement in the shear, and high measurability in terms of force and geometry is designed, built and verified. Parameters important to the shear process are studied with perturbation analysis techniques and requirements on input parameter accuracy are formulated to meet experimental output demands. Input parameters in shearing are mostly geometric parameters, but also material properties and contact conditions. Based on the accuracy requirements, a symmetric experiment with internal balancing of forces is constructed to avoid guides and corresponding friction losses. Finally, the experimental procedure is validated through shearing of a medium grade steel. With the obtained experimental set-up performance, force changes as result of changes in studied input parameters are distinguishable down to a level of 1%.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Effects of amylase addition on extruder parameters, cost of extrusion, kibble quality and digestibility of dog food were measured in two separate experiments. In experiment 1, 120 kilo-novo-alpha-amilase-unit (KNU)/kg of heat stable alpha-amylase produced by Bacillus licheniformis was added in liquid form during a preconditioning period. In experiment 23684 KNU/kg of heat stable alpha-amylase produced by Aspergillus oryzae was mixed with the ingredients before extrusion. The diets were processed in a single screw extruder and submitted to digestibility and on experiment 1 also to palatability tests. Digestibility was tested using 12 dogs, six per diet. Data were submitted to analysis of variance followed by F-test. Amylase addition altered extrusion parameters in both experiments (P<0.05), with higher output (kg of dry matter [DM]/h: 28% and 43% higher in experiments 1 and 2) and less electric energy consumption (kW to produce 100 kg DM: 22% and 29% lower in experiments 1 and 2). Kibble appearance and quality [density (g/L), cutting force (g), and starch gelatinization degree (%)] did not change with enzyme treatment (P>0.05). Likewise, enzyme addition did not change nutrient digestibility, fecal dry matter or food palatability (P<0.05). Taken together our results suggest that amylase promoted the breakdown of amylose chains, thereby reducing the dough viscosity and resistance inside the extruder which allowed for higher product flow and less electricity energy consumption without altering food quality. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
O corte de materiais por disco abrasivo é um dos processos que apresentam as melhores características de economia, eficiência e rapidez sendo muito utilizado no meio industrial. Fatores como porcentagens e homogeneidade da mistura dos componentes, tamanho, forma (abrasividade), tenacidade e dureza dos grãos abrasivos, tipos de ligantes e de abrasivos, velocidade de corte e velocidade de mergulho influenciam na segurança, no desempenho e comportamento da operação. Este trabalho apresenta um estudo sobre a influência da dureza dos discos abrasivos no desempenho do processo de corte em operações do tipo remoção a seco. O aumento da dureza dos discos propiciou um aumento da força tangencial de corte e da relação G, devido à mais forte ligação entre o grão e o ligante no compósito. Os resultados mostram que a dureza dos discos abrasivos afeta a economia, pois influencia na vida útil dos discos abrasivos em termos de números de cortes proporcionados; a produtividade, pois está relacionada com o número de trocas de discos desgastados; os esforços necessários para a operação, pois estão relacionados com as forças tangenciais de corte.
Resumo:
After sintering advanced ceramics, there are invariably distortions, caused in large part by the heterogeneous distribution of density gradients along the compacted piece. To correct distortions, machining is generally used to manufacture pieces within dimensional and geometric tolerances. Hence, narrow material removal limit conditions are applied, which minimize the generation of damage. Another alternative is machining the compacted piece before sintering, called the green ceramic stage, which allows machining without damage to mechanical strength. Since the greatest concentration of density gradients is located in the outer-most layers of the compacted piece, this study investigated the removal of different allowance values by means of green machining. The output variables are distortion after sintering, tool wear, cutting force, and the surface roughness of the green ceramics and the sintered ones. The following results have been noted: less distortion is verified in the sintered piece after 1mm allowance removal; and the higher the tool wear the worse the surface roughness of both green and sintered pieces.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper is presented an experimental research in which the grinding of seating surfaces of inlet engine valves was improved by the adoption of the most effective cutting fluid type, matching the new requirements of cutting fluid application. Four different types of cutting fluids (straight oil and three different types of soluble oils) were analyzed. As qualitative and quantitative evaluation parameters of the performance of the cutting fluids, the roughness, the grinding wheel wear, the cutting force and the workpiece residual stress were determined. As a conclusion, the straight oil was the cutting fluid that presented the best results in all of the parameters analyzed. Copyright © 2000 Society of Automotive Engineers, Inc.
Resumo:
We report herein on a comparison of the performance of two different grinding wheels (conventional and CBN) in the transverse cylindrical grinding of a eutectic alloy. Three cutting conditions were tested: rough, semi-finishing and finishing. The parameters of evaluation were the cutting force, roughness and wheel wear. The optimal cutting force and roughness values were obtained when grinding with the conventional wheel, due to the superior dressing operation performed under every cutting condition tested. Although the CBN wheel presented the best G ratio values, they were lower than expected owing to the inappropriate dressing operation applied. Excessive wheel corner wear was detected in both wheels, caused by the grinding kinematics (transverse grinding) employed. In terms of cutting force and roughness, the conventional wheel proved to be the better choice under the conditions tested. However, in terms of the G ratio, a cost analysis is crucial to determine whether the differences between the wheels justify the use of the CBN wheel, in which case the dressing operation requires improvement.
Resumo:
The behavior of the minimum quantity lubricant (MQL) technique was analyzed under different lubricating and cooling conditions when grinding ABNT 4340 steel. The comparative analysis of the residual stress values showed that residual compressive stresses were obtained under all the lubrication/cooling conditions and types of abrasive tools employed. The highest residual compressive stress obtained with the aluminum oxide grinding wheel with MQL under the condition of V= 30m/s for air and V= 40ml/h for lubricant was -376MPa against the -160MPa attained with conventional cooling, representing a 135% increase in residual compressive stress. The results show that method and quantity of lubricant and cooling are factors that influence the grinding process.
Resumo:
Grinding - the final machining process of a workpiece - requires large amounts of cutting fluids for the lubrication, cooling and removal of chips. These fluids are highly aggressive to the environment. With the technological advances of recent years, the worldwide trend is to produce increasingly sophisticated components with very strict geometric and dimensional tolerances, good surface finish, at low costs, and particularly without damaging the environment. The latter requirement can be achieved by recycling cutting fluids, which is a costly solution, or by drastically reducing the amount of cutting fluids employed in the grinding process. This alternative was investigated here by varying the plunge velocity in the plunge cylindrical grinding of ABNT D6 steel, rationalizing the application of two cutting fluids and using a superabrasive CBN (cubic boron nitride) grinding wheel with vitrified binder to evaluate the output parameters of tangential cutting force, acoustic emission, roughness, roundness, tool wear, residual stress and surface integrity, using scanning electron microscopy (SEM) to examine the test specimens. The performance of the cutting fluid, grinding wheel and plunge velocity were analyzed to identify the best machining conditions which allowed for a reduction of the cutting fluid volume, reducing the machining time without impairing the geometric and dimensional parameters, and the surface finish and integrity of the machined components.
Resumo:
An alternative for grinding of sintered ceramic is the machining on the green state of the ceramic, which presents easy cutting without the introduction of harmful defects to its mechanical resistance. However, after sintering there are invariably distortions caused by the heterogeneous distribution of density gradients, which are located in the most outlying portions of the compacted workpiece. In order to minimize these density gradients, this study examined the influence of different allowance values and their corresponding influence in distortion after sintering alumina specimens with 99.8 % purity by turning operation using cemented carbide tool. Besides distortion, other output variables were analyzed, such as tool wear, cutting force and surface roughness of green and sintered ceramics. Results showed a distortion reduction up to 81.4%. Green machining is beneficial for reducing surface roughness in both green and sintered states. Cutting tool wear has a direct influence on surface roughness and cutting force.