991 resultados para customer energy
Resumo:
The paper proposes a methodology to increase the probability of delivering power to any load point by identifying new investments in distribution energy systems. The proposed methodology is based on statistical failure and repair data of distribution components and it uses a fuzzy-probabilistic modeling for the components outage parameters. The fuzzy membership functions of the outage parameters of each component are based on statistical records. A mixed integer nonlinear programming optimization model is developed in order to identify the adequate investments in distribution energy system components which allow increasing the probability of delivering power to any customer in the distribution system at the minimum possible cost for the system operator. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 180 bus distribution network.
Resumo:
Thesis to obtain the Master Degree in Electronics and Telecommunications Engineering
Resumo:
This paper proposes a PSO based approach to increase the probability of delivering power to any load point by identifying new investments in distribution energy systems. The statistical failure and repair data of distribution components is the main basis of the proposed methodology that uses a fuzzyprobabilistic modeling for the components outage parameters. The fuzzy membership functions of the outage parameters of each component are based on statistical records. A Modified Discrete PSO optimization model is developed in order to identify the adequate investments in distribution energy system components which allow increasing the probability of delivering power to any customer in the distribution system at the minimum possible cost for the system operator. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 180 bus distribution network.
Resumo:
Demand response is an energy resource that has gained increasing importance in the context of competitive electricity markets and of smart grids. New business models and methods designed to integrate demand response in electricity markets and of smart grids have been published, reporting the need of additional work in this field. In order to adequately remunerate the participation of the consumers in demand response programs, improved consumers’ performance evaluation methods are needed. The methodology proposed in the present paper determines the characterization of the baseline approach that better fits the consumer historic consumption, in order to determine the expected consumption in absent of participation in a demand response event and then determine the actual consumption reduction. The defined baseline can then be used to better determine the remuneration of the consumer. The paper includes a case study with real data to illustrate the application of the proposed methodology.
Resumo:
Providing homeowners with real-time feedback on their electricity consumption through a dedicated display device has been shown to reduce consumption by approximately 6-10%. However, recent advances in smart grid technology have enabled larger sample sizes and more representative sample selection and recruitment methods for display trials. By analyzing these factors using data from current studies, this paper argues that a realistic, large-scale conservation effect from feedback is in the range of 3-5%. Subsequent analysis shows that providing real-time feedback may not be a cost effective strategy for reducing carbon emissions in Australia, but that it may enable additional benefits such as customer retention and peak-load shift.
Resumo:
Clustering methods are increasingly being applied to residential smart meter data, providing a number of important opportunities for distribution network operators (DNOs) to manage and plan the low voltage networks. Clustering has a number of potential advantages for DNOs including, identifying suitable candidates for demand response and improving energy profile modelling. However, due to the high stochasticity and irregularity of household level demand, detailed analytics are required to define appropriate attributes to cluster. In this paper we present in-depth analysis of customer smart meter data to better understand peak demand and major sources of variability in their behaviour. We find four key time periods in which the data should be analysed and use this to form relevant attributes for our clustering. We present a finite mixture model based clustering where we discover 10 distinct behaviour groups describing customers based on their demand and their variability. Finally, using an existing bootstrapping technique we show that the clustering is reliable. To the authors knowledge this is the first time in the power systems literature that the sample robustness of the clustering has been tested.
Resumo:
Renewable energy production is a basic supplement to stabilize rapidly increasing global energy demand and skyrocketing energy price as well as to balance the fluctuation of supply from non-renewable energy sources at electrical grid hubs. The European energy traders, government and private company energy providers and other stakeholders have been, since recently, a major beneficiary, customer and clients of Hydropower simulation solutions. The relationship between rainfall-runoff model outputs and energy productions of hydropower plants has not been clearly studied. In this research, association of rainfall, catchment characteristics, river network and runoff with energy production of a particular hydropower station is examined. The essence of this study is to justify the correspondence between runoff extracted from calibrated catchment and energy production of hydropower plant located at a catchment outlet; to employ a unique technique to convert runoff to energy based on statistical and graphical trend analysis of the two, and to provide environment for energy forecast. For rainfall-runoff model setup and calibration, MIKE 11 NAM model is applied, meanwhile MIKE 11 SO model is used to track, adopt and set a control strategy at hydropower location for runoff-energy correlation. The model is tested at two selected micro run-of-river hydropower plants located in South Germany. Two consecutive calibration is compromised to test the model; one for rainfall-runoff model and other for energy simulation. Calibration results and supporting verification plots of two case studies indicated that simulated discharge and energy production is comparable with the measured discharge and energy production respectively.
Resumo:
This paper explains why the reliability assessment of energy limited systems requires more detailed models for primary generating resources availability, internal and external generating dispatch and customer demand than the ones commonly used for large power systems and presents a methodology based on the full sequential Montecarlo simulation technique with AC power flow for their long term reliability assessment which can properly include these detailed models. By means of a real example, it is shown how the simplified modeling traditionally used for large power systems leads to pessimistic predictions if it is applied to an energy limited system and also that it cannot predict all the load point adequacy problems. © 2006 IEEE.
Resumo:
Il Lavoro si inserisce nel quadro complesso del settore Energy & Utilities e si propone l’obiettivo di analizzare l’attuale mercato dell’energia per individuarne i driver al cambiamento e presentare un innovativo modello di business per le aziende di vendita di energia, con lo scopo di recuperare efficienza nella gestione del Cliente finale, cercando di quantificarne i vantaggi potenziali. L’attività di studio e progettuale è stata svolta nell’ambito di un periodo di tirocinio formativo della durata di sei mesi, effettuato presso Engineering Ingegneria Informatica S.p.A., in particolare nella sede di viale Masini di Bologna, a seguito della candidatura autonoma dello studente e del suo immediato inserimento nei processi di business della divisione Utilities dell’azienda. Il Lavoro si suddivide in 9 capitoli: dopo una breve introduzione sul settore Energy&Utilities, nei primi quattro capitoli sono descritte le filiere produttive dei principali servizi, i principali attori del mercato e gli aspetti normativi e tariffari che caratterizzano l’intero settore, valutando in particolare la formazione del prezzo del gas e dell’energia elettrica. I capitoli cinque e sei descrivono invece le principali tendenze, le strategie competitive in atto nel mercato delle Utilities e l’importanza del Cliente, in un’ottica di CRM che segue i dettami del modello “Customer Centric”. Gli ultimi capitoli mostrano invece, dopo una breve presentazione dell’azienda in cui lo studente ha svolto l’attività, l’intero lavoro di analisi realizzato, input del modello di business a chiusura del Lavoro, volto a quantificare gli impatti del processo di liberalizzazione che ha radicalmente modificato il settore delle Utilities negli ultimi anni, valutando a proposito la profittabilità per un cliente medio in base ad un’opportuna pre-analisi di segmentazione. Il modello di business che occupa l’ultimo capitolo costituisce una soluzione originale e innovativa per incrementare tale profittabilità.
Resumo:
We studied the situation in Spanish public universities regarding the use of the Balanced Scorecard (BSC), as an instrument of control and strategic management. Also, we studied its application to the School of Mines and Energy at Universidad Politécnica de Madrid. The main advantage of the BSC is that improves the organizational structure of the workplace and the achievement of the objectives that ensure long-term success. First we review the strategy for success used in the Spanish educational system and specifically in the Spanish public universities. Then using the BSC and applying the main strategic lines for the successful management of the School of Mines and Energy at Universidad Politécnica de Madrid. The strategic lines affect all the college groups and the success of the BSC tool is to increase communication between the faculties, personal auxiliary, students and society in general that make up the university. First we performed a SWOT analysis (DAFO in Spanish) there are proposed different perspectives that focus the long-term strategic objectives. The BSC is designed based on the strategic objectives that set the direction through using indicators and initiatives, the goals are achieved up to the programmed schedule. In the perspective of teaching, objectives are set to update facilities and increase partnerships with other universities and businesses, encouraging ongoing training of staff and improved coordination and internal communication. The internal process perspective aims at improving the marketing, the promotion of the international dimension of the school through strategic alliances, better mobility for students and professors and improved teaching and research quality results. It continues with improving the image of the school between customer?s perspective, the quality perceived by students and the loyalty of the teaching staff by retaining talent. Finally, the financial perspective which should contain costs without harming the quality, improving the employability of students and achieve relevant jobs at teaching and research through international measurement standards.
Resumo:
The Supplemental Low Income Energy Assistance Fund is the depository for energy assistance charges collected by utilities and participating municipal utilities and electric cooperatives authorized by the Electric Customer Choice and Rate Relief Act of 1997 (220 ILCS 5). The energy assistance charges provided a nonfederal funding stream to the Department for use in providing energy related assistance to low-income households under the Illinois Low Income Home Energy Assistance and Illinois Home Weatherization (LIHEAP) Programs. Since the changes were imposed in January of 1998, $406,683,769 has been deposited into the Fund through December 2003. Of this amount, the Department has spent $326,137,510 to provide energy assistance to 802,091 households; $33,845,784 to weatherize 6,584 homes; and $32,570,739 to cover administrative expenses.
Resumo:
Non-technical losses (NTL) identification and prediction are important tasks for many utilities. Data from customer information system (CIS) can be used for NTL analysis. However, in order to accurately and efficiently perform NTL analysis, the original data from CIS need to be pre-processed before any detailed NTL analysis can be carried out. In this paper, we propose a feature selection based method for CIS data pre-processing in order to extract the most relevant information for further analysis such as clustering and classifications. By removing irrelevant and redundant features, feature selection is an essential step in data mining process in finding optimal subset of features to improve the quality of result by giving faster time processing, higher accuracy and simpler results with fewer features. Detailed feature selection analysis is presented in the paper. Both time-domain and load shape data are compared based on the accuracy, consistency and statistical dependencies between features.
Resumo:
This thesis investigates the modelling of drying processes for the promotion of market-led Demand Side Management (DSM) as applied to the UK Public Electricity Suppliers. A review of DSM in the electricity supply industry is provided, together with a discussion of the relevant drivers supporting market-led DSM and energy services (ES). The potential opportunities for ES in a fully deregulated energy market are outlined. It is suggested that targeted industrial sector energy efficiency schemes offer significant opportunity for long term customer and supplier benefit. On a process level, industrial drying is highlighted as offering significant scope for the application of energy services. Drying is an energy-intensive process used widely throughout industry. The results of an energy survey suggest that 17.7 per cent of total UK industrial energy use derives from drying processes. Comparison with published work indicates that energy use for drying shows an increasing trend against a background of reducing overall industrial energy use. Airless drying is highlighted as offering potential energy saving and production benefits to industry. To this end, a comprehensive review of the novel airless drying technology and its background theory is made. Advantages and disadvantages of airless operation are defined and the limited market penetration of airless drying is identified, as are the key opportunities for energy saving. Limited literature has been found which details the modelling of energy use for airless drying. A review of drying theory and previous modelling work is made in an attempt to model energy consumption for drying processes. The history of drying models is presented as well as a discussion of the different approaches taken and their relative merits. The viability of deriving energy use from empirical drying data is examined. Adaptive neuro fuzzy inference systems (ANFIS) are successfully applied to the modelling of drying rates for 3 drying technologies, namely convective air, heat pump and airless drying. The ANFIS systems are then integrated into a novel energy services model for the prediction of relative drying times, energy cost and atmospheric carbon dioxide emission levels. The author believes that this work constitutes the first to use fuzzy systems for the modelling of drying performance as an energy services approach to DSM. To gain an insight into the 'real world' use of energy for drying, this thesis presents a unique first-order energy audit of every ceramic sanitaryware manufacturing site in the UK. Previously unknown patterns of energy use are highlighted. Supplementary comments on the timing and use of drying systems are also made. The limitations of such large scope energy surveys are discussed.
Resumo:
Guest editorial Ali Emrouznejad is a Senior Lecturer at the Aston Business School in Birmingham, UK. His areas of research interest include performance measurement and management, efficiency and productivity analysis as well as data mining. He has published widely in various international journals. He is an Associate Editor of IMA Journal of Management Mathematics and Guest Editor to several special issues of journals including Journal of Operational Research Society, Annals of Operations Research, Journal of Medical Systems, and International Journal of Energy Management Sector. He is in the editorial board of several international journals and co-founder of Performance Improvement Management Software. William Ho is a Senior Lecturer at the Aston University Business School. Before joining Aston in 2005, he had worked as a Research Associate in the Department of Industrial and Systems Engineering at the Hong Kong Polytechnic University. His research interests include supply chain management, production and operations management, and operations research. He has published extensively in various international journals like Computers & Operations Research, Engineering Applications of Artificial Intelligence, European Journal of Operational Research, Expert Systems with Applications, International Journal of Production Economics, International Journal of Production Research, Supply Chain Management: An International Journal, and so on. His first authored book was published in 2006. He is an Editorial Board member of the International Journal of Advanced Manufacturing Technology and an Associate Editor of the OR Insight Journal. Currently, he is a Scholar of the Advanced Institute of Management Research. Uses of frontier efficiency methodologies and multi-criteria decision making for performance measurement in the energy sector This special issue aims to focus on holistic, applied research on performance measurement in energy sector management and for publication of relevant applied research to bridge the gap between industry and academia. After a rigorous refereeing process, seven papers were included in this special issue. The volume opens with five data envelopment analysis (DEA)-based papers. Wu et al. apply the DEA-based Malmquist index to evaluate the changes in relative efficiency and the total factor productivity of coal-fired electricity generation of 30 Chinese administrative regions from 1999 to 2007. Factors considered in the model include fuel consumption, labor, capital, sulphur dioxide emissions, and electricity generated. The authors reveal that the east provinces were relatively and technically more efficient, whereas the west provinces had the highest growth rate in the period studied. Ioannis E. Tsolas applies the DEA approach to assess the performance of Greek fossil fuel-fired power stations taking undesirable outputs into consideration, such as carbon dioxide and sulphur dioxide emissions. In addition, the bootstrapping approach is deployed to address the uncertainty surrounding DEA point estimates, and provide bias-corrected estimations and confidence intervals for the point estimates. The author revealed from the sample that the non-lignite-fired stations are on an average more efficient than the lignite-fired stations. Maethee Mekaroonreung and Andrew L. Johnson compare the relative performance of three DEA-based measures, which estimate production frontiers and evaluate the relative efficiency of 113 US petroleum refineries while considering undesirable outputs. Three inputs (capital, energy consumption, and crude oil consumption), two desirable outputs (gasoline and distillate generation), and an undesirable output (toxic release) are considered in the DEA models. The authors discover that refineries in the Rocky Mountain region performed the best, and about 60 percent of oil refineries in the sample could improve their efficiencies further. H. Omrani, A. Azadeh, S. F. Ghaderi, and S. Abdollahzadeh presented an integrated approach, combining DEA, corrected ordinary least squares (COLS), and principal component analysis (PCA) methods, to calculate the relative efficiency scores of 26 Iranian electricity distribution units from 2003 to 2006. Specifically, both DEA and COLS are used to check three internal consistency conditions, whereas PCA is used to verify and validate the final ranking results of either DEA (consistency) or DEA-COLS (non-consistency). Three inputs (network length, transformer capacity, and number of employees) and two outputs (number of customers and total electricity sales) are considered in the model. Virendra Ajodhia applied three DEA-based models to evaluate the relative performance of 20 electricity distribution firms from the UK and the Netherlands. The first model is a traditional DEA model for analyzing cost-only efficiency. The second model includes (inverse) quality by modelling total customer minutes lost as an input data. The third model is based on the idea of using total social costs, including the firm’s private costs and the interruption costs incurred by consumers, as an input. Both energy-delivered and number of consumers are treated as the outputs in the models. After five DEA papers, Stelios Grafakos, Alexandros Flamos, Vlasis Oikonomou, and D. Zevgolis presented a multiple criteria analysis weighting approach to evaluate the energy and climate policy. The proposed approach is akin to the analytic hierarchy process, which consists of pairwise comparisons, consistency verification, and criteria prioritization. In the approach, stakeholders and experts in the energy policy field are incorporated in the evaluation process by providing an interactive mean with verbal, numerical, and visual representation of their preferences. A total of 14 evaluation criteria were considered and classified into four objectives, such as climate change mitigation, energy effectiveness, socioeconomic, and competitiveness and technology. Finally, Borge Hess applied the stochastic frontier analysis approach to analyze the impact of various business strategies, including acquisition, holding structures, and joint ventures, on a firm’s efficiency within a sample of 47 natural gas transmission pipelines in the USA from 1996 to 2005. The author finds that there were no significant changes in the firm’s efficiency by an acquisition, and there is a weak evidence for efficiency improvements caused by the new shareholder. Besides, the author discovers that parent companies appear not to influence a subsidiary’s efficiency positively. In addition, the analysis shows a negative impact of a joint venture on technical efficiency of the pipeline company. To conclude, we are grateful to all the authors for their contribution, and all the reviewers for their constructive comments, which made this special issue possible. We hope that this issue would contribute significantly to performance improvement of the energy sector.