959 resultados para cryptic species
Resumo:
Surveys were conducted in Brazil, Benin and Tanzania to collect predatory mites as candidates for control of the coconut mite Aceria guerreronis Keifer, a serious pest of coconut fruits. At all locations surveyed, one of the most dominant predators on infested coconut fruits was identified as Neoseiulus baraki Athias-Henriot, based on morphological similarity with regard to taxonomically relevant characters. However, scrutiny of our own and published descriptions suggests that consistent morphological differences may exist between the Benin population and those from the other geographic origins. In this study, we combined three methods to assess whether these populations belong to one species or a few distinct, yet closely related species. First, multivariate analysis of 32 morphological characters showed that the Benin population differed from the other three populations. Second, DNA sequence analysis based on the mitochondrial cytochrome oxidase subunit I (COI) showed the same difference between these populations. Third, cross-breeding between populations was unsuccessful in all combinations. These data provide evidence for the existence of cryptic species. Subsequent morphological research showed that the Benin population can be distinguished from the others by a new character (not included in the multivariate analysis), viz. the number of teeth on the fixed digit of the female chelicera.
Resumo:
Despite implausible cosmopolitanism, the species Scorpiodinipora costulata (Canu & Bassler, 1929) has been attributed with reservations to small encrusting colonies with similar morphological features whose known distribution is scattered in tropical and subtropical seas: Pacific Ocean (Philippines), Indian Ocean (Oman), Red Sea, SE Mediterranean, SE Atlantic (Ghana) and SW Atlantic (Brazil). This material raised questions about its generic assignment. The genus Scorpiodinipora Balavoine, 1959 is redescribed with Schizoporella costulata Canu & Bassler, 1929, from the Philippines as the type species, as Balavoine misidentified the specimens to define the genus as Cellepora bernardii Audouin, 1826. Moreover, SEM examination of the cotypes of S. costulata showed that Canu & Bassler confused two genera among them. A lectotype and paralectorype were thus chosen from Canu & Bassler's syntypes corresponding with the present morphotype. Hippodiplosia ottomuelleriana var. parva Marcus, 1938, from Brazil, which presents the same morphotype, is provisionally considered as the junior synonym of S. costulata. Considering the broad allopatric distribution of this morphotype across the oceans and the low capacity of dispersal of species with short-lived larvae, it is likely that this material includes several sibling species. However, the role of man-mediated dispersal is not excluded, at least in regions with high shipping activity, such as that comprising the Suez Canal.
Resumo:
Although a large amount of data have been published in past years on the taxonomic status of the Anastrepha fraterculus (Wiedemann) species complex, there is still a need to know how many species this complex comprises, the distribution of each one, and their distinguishing features. In this study, we assessed the morphometric variability of 32 populations from the A. fraterculus complex, located in major biogeographical areas from the Neotropics. Multivariate techniques for analysis were applied to the measurements of 21 variables referring to the mesonotum, aculeus, and wing. For the first time, our results identified the presence of seven distinct morphotypes within this species complex. According to the biogeographical areas, populations occurring in the Mesoamerican dominion (Mexico, Guatemala, and Panama) were clustered within a single natural entity labeled as the "Mexican" morphotype; whereas in the northwestern South American dominion, samples fell into three distinct groups: the "Venezuelan" morphotype with a single population from the Caribbean lowlands of Venezuela, the "Andean" morphotype from the highlands of Venezuela and Colombia, and the third group or "Peruvian" morphotype comprised the samples from the Pacific coastal lowlands of Ecuador and Peru. Three additional groups were identified from the Chacoan and Paranaense sub-regions: the morphotype "Brazilian-1" was recognized as including the Argentinean samples with most pertaining to Brazil, and widely distributed in these biogeographical areas; the morphotype "Brazilian-2" was recognized as including two samples from the state of Sao Paulo (Ilha-Bela and Sao Sebastiao); whereas the morphotype "Brazilian-3" included a single population from Botucatu (state of Sao Paulo). Based on data published by previous authors showing genetic and karyotypic differentiation, as well as reproductive isolation, we have concluded that such morphotypes indeed represent natural groups and distinct taxonomic entities.
Resumo:
Previous analyses of the mitochondrial gene cytochrome c oxidase subunit 1 (COI) and γ-proteobacterial endosymbiont diversity have suggested that the marine bryozoan Bugula neritina is a complex of three cryptic species, namely Types S, D and N. Types D and N were previously reported to have restricted distributions along California (western USA) and Delaware and Connecticut (eastern USA), respectively, whereas Type S is considered widespread in tropical, subtropical and temperate regions due to anthropogenic transport. Here, Bayesian species delimitation analysis of a data set composed of two mitochondrial (COI and large ribosomal RNA subunit [16S]) and two nuclear genes (dynein light chain roadblock type-2 protein [DYN] and voltage-dependent anion-selective channel protein [VDAC]) demonstrated that Types S, D and N correspond to three biological species. This finding was significantly supported, in spite of the combinations of priors applied for ancestral population size and root age. Furthermore, COI sequences were used to assess the introduction patterns of the cosmopolitan Type S species. Two COI haplotypes of Type S (S1a and S1d) were found occurring at a global scale. Mantel tests showed correlation between these haplotypes and local sea surface temperature tolerance. Accordingly, the distributions of Type S haplotypes may reflect intraspecific temperature tolerance variation, in addition to the role of introduction vectors. Finally, we show that the Type N may also have been introduced widely, as this species was found for the first time in Central California and north-eastern Australia.
Resumo:
Cryptic species, i.e. species that are morphologically hard to distinguish, have been detected repeatedly in various taxa and ecosystems. In order to evaluate the importance of this finding, we have to know in how far cryptic species differ in various aspects of their biology. The amphipod Gammarus fossarum is a key invertebrate in freshwater streams and contains several cryptic species. We examined the population genetic structure, genetic diversity and demographic history of two of them (type A and type B) using microsatellite markers and asked whether they show significant differences. We present results of population genetic analyses based on a total of 37 populations from the headwaters of two major European drainages, Rhine and Rhone. We found that, in both species, genetic diversity was geographically structured among and within drainages. For type A in the Rhine and type B in the Rhone, we detected significant patterns of isolation by distance. The increase of genetic differentiation with geographical distance, however, was much higher in type A than in type B. This result indicates substantial interspecific differences in population history and/or the extent of current gene flow between populations. In the Rhine, type B does not show evidence of isolation by distance, and population differentiation is relatively low across hundreds of kilometres. The majority of these populations also show signatures of recent bottlenecks. These patterns are consistent with a recent expansion of type B into the Rhine drainage. In summary, our results suggest considerable and previously unrecognized interspecific differences in the genetic structure of these cryptic keystone species.
Resumo:
In order to understand and protect ecosystems, local gene pools need to be evaluated with respect to their uniqueness. Cryptic species present a challenge in this context because their presence, if unrecognized, may lead to serious misjudgement of the distribution of evolutionarily distinct genetic entities. In this study, we describe the current geographical distribution of cryptic species of the ecologically important stream amphipod Gammarus fossarum (types A, B and C). We use a novel pyrosequencing assay for molecular species identification and survey 62 populations in Switzerland, plus several populations in Germany and eastern France. In addition, we compile data from previous publications (mainly Germany). A clear transition is observed from type A in the east (Danube and Po drainages) to types B and, more rarely, C in the west (Meuse, Rhone, and four smaller French river systems). Within the Rhine drainage, the cryptic species meet in a contact zone which spans the entire G. fossarum distribution range from north to south. This large-scale geographical sorting indicates that types A and B persisted in separate refugia during Pleistocene glaciations. Within the contact zone, the species rarely co-occur at the same site, suggesting that ecological processes may preclude long-term coexistence. The clear phylogeographical signal observed in this study implies that, in many parts of Europe, only one of the cryptic species is present.
Resumo:
Using allozymes and mtDNA sequences from the cytochrome b gene, we report that the brown kiwi has the highest levels of genetic structuring observed in birds. Moreover, the mtDNA sequences are, with two minor exceptions, diagnostic genetic markers for each population investigated, even though they are among the more slowly evolving coding regions in this genome. A major unexpected finding was the concordant split in molecular phylogenies between brown kiwis in the southern South Island and elsewhere in New Zealand. This basic phylogeographic boundary halfway down the South Island coincides with a fixed allele difference in the Hb nuclear locus and strongly suggests that two morphologically cryptic species are currently merged under one polytypic species. This is another striking example of how molecular genetic assays can detect phylogenetic discontinuities that are not reflected in traditional morphologically based taxonomies. However, reanalysis of the morphological characters by using phylogenetic methods revealed that the reason for this discordance is that most are primitive and thus are phylogenetically uninformative. Shared-derived morphological characters support the same relationships evident in the molecular phylogenies and, in concert with the molecular data, suggest that as brown kiwis colonized northward from the southern South Island, they retained many primitive characters that confounded earlier systematists. Strong subdivided population structure and cryptic species in brown kiwis seem to have evolved relatively recently as a consequence of Pleistocene range disjunctions, low dispersal power, and genetic drift in small populations.
Resumo:
Two new species of Anomala Samouelle from Costa Rica are described: Anomala moroni new species and A. parvaeucoma new species. Habitus, protibia, distribution map, and male genitalia (aedeagus and endophallus) of each species are illustrated. A key for the dorsally setose species from the Neotropical region is provided.
Resumo:
Background Figs and fig-pollinating wasp species usually display a highly specific one-to-one association. However, more and more studies have revealed that the "one-to-one" rule has been broken. Co-pollinators have been reported, but we do not yet know how they evolve. They may evolve from insect speciation induced or facilitated by Wolbachia which can manipulate host reproduction and induce reproductive isolation. In addition, Wolbachia can affect host mitochondrial DNA evolution, because of the linkage between Wolbachia and associated mitochondrial haplotypes, and thus confound host phylogeny based on mtDNA. Previous research has shown that fig wasps have the highest incidence of Wolbachia infection in all insect taxa, and Wolbachia may have great influence on fig wasp biology. Therefore, we look forward to understanding the influence of Wolbachia on mitochondrial DNA evolution and speciation in fig wasps. Results We surveyed 76 pollinator wasp specimens from nine Ficus microcarpa trees each growing at a different location in Hainan and Fujian Provinces, China. We found that all wasps were morphologically identified as Eupristina verticillata, but diverged into three clades with 4.22-5.28% mtDNA divergence and 2.29-20.72% nuclear gene divergence. We also found very strong concordance between E. verticillata clades and Wolbachia infection status, and the predicted effects of Wolbachia on both mtDNA diversity and evolution by decreasing mitochondrial haplotypes. Conclusions Our study reveals that the pollinating wasp E. verticillata on F. microcarpa has diverged into three cryptic species, and Wolbachia may have a role in this divergence. The results also indicate that Wolbachia strains infecting E. verticillata have likely resulted in selective sweeps on host mitochondrial DNA.
Resumo:
Assessing the ecological requirements of species coexisting within a community is an essential requisite for developing sound conservation action. A particularly interesting question is what mechanisms govern the stable coexistence of cryptic species within a community, i.e. species that are almost impossible to distinguish. Resource partitioning theory predicts that cryptic species, like other sympatric taxa, will occupy distinct ecological niches. This prediction is widely inferred from eco-morphological studies. A new cryptic long-eared bat species, Plecotus macrobullaris, has been recently discovered in the complex of two other species present in the European Alps, with even evidence for a few mixed colonies. This discovery poses challenges to bat ecologists concerned with planning conservation measures beyond roost protection. We therefore tested whether foraging habitat segregation occurred among the three cryptic Plecotus bat species in Switzerland by radiotracking 24 breeding female bats (8 of each species). We compared habitat features at locations visited by a bat versus random locations within individual home ranges, applying mixed effects logistic regression. Distinct, species-specific habitat preferences were revealed. P. auritus foraged mostly within traditional orchards in roost vicinity, with a marked preference for habitat heterogeneity. P. austriacus foraged up to 4.7 km from the roost, selecting mostly fruit tree plantations, hedges and tree lines. P. macrobullaris preferred patchy deciduous and mixed forests with high vertical heterogeneity in a grassland dominated-matrix. These species-specific habitat preferences should inform future conservation programmes. They highlight the possible need of distinct conservation measures for species that look very much alike.
Resumo:
Many parasites infect multiple host species. In coevolving host–parasite interactions, theory predicts that parasites should be adapted to locally common hosts, which could lead to regional shifts in host preferences. We studied the interaction between freshwater Gammarus (Crustacea, Amphipoda) and their acanthocephalan parasites using a large-scale field survey and experiments, combined with molecular identification of cryptic host and parasite species. Gammarus pulex is a common host for multiple species of Acanthocephala in Europe but, in Switzerland, is less common than two cryptic members of the Gammarus fossarum species complex (type A and type B). We found that natural populations of these cryptic species were frequently infected by Pomphorhynchus tereticollis and Polymorphus minutus. Four additional parasite species occurred only locally. Parasites were more common in G. fossarum type B than in type A. Infection experiments using several host and parasite sources confirmed consistently lower infection rates in G. pulex than in G. fossarum type A, suggesting a general difference in susceptibility between the two species. In conclusion, we could show that cryptic host species differ in their interactions with parasites, but that these differences were much less dramatic than differences between G. fossarum (type A) and G. pulex. Our data suggest that the acanthocephalans in Switzerland have adapted to the two most common Gammarus species in this region where host species frequencies differ from near-by regions in Europe.