114 resultados para cropland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Date of Acceptance: 04/12/2016 © 2016 The Author(s). This work was supported by a University of Aberdeen Environment and Food Security Theme/the James Hutton Institute PhD studentship, and contributes to the Scottish Food Security Alliance-Crops and the Belmont Forum supported DEVIL project (NERC fund UK contribution: NE/M021327/1). J.M. and R.B.M. acknowledge funding from the Rural and Environment Science and Analytical Services, Scottish Government. T.K. acknowledges funding from the European Research Council Grant ERC-263522 (LUISE).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the world’s rural populations continue to migrate from farmland to sprawling cities, transport networks form an impenetrable maze within which monocultures of urban form erupt from the spaces in‐between. These urban monocultures are as problematic to human activity in cities as cropping monocultures are to ecosystems in regional landscapes. In China, the speed of urbanisation is exacerbating the production of mono‐functional private and public spaces. Edges are tightly controlled. Barriers and management practices at these boundaries are discouraging the formation of new synergistic relationships, critical in the long‐term stability of ecosystems that host urban habitats. Some urban planners, engineers, urban designers, architects and landscape architects have recognised these shortcomings in contemporary Chinese cities. The ideology of sustainability, while critically debated, is bringing together thinking people in these and other professions under the umbrella of an ecological ethic. This essay aims to apply landscape ecology theory, a conceptual framework used by many professionals involved in land development processes, to a concept being developed by BAU International called Networks Cities: a city with its various land uses arranged in nets of continuity, adjacency, and superposition. It will consider six lesser‐known concepts in relation to creating enhanced human activity along (un)structured edges between proposed nets and suggest new frontiers that might be challenged in an eco‐city. Ecological theory suggests that sustaining biodiversity in regions and landscapes depends on habitat distribution patterns. Flora and fauna biologists have long studied edge habitats and have been confounded by the paradox that maximising the breadth of edges is detrimental to specialist species but favourable to generalist species. Generalist species of plants and animals tolerate frequent change in the landscape, frequenting two or more habitats for their survival. Specialist species are less tolerant of change, having specific habitat requirements during their life cycle. Protecting species richness then may be at odds with increasing mixed habitats or mixed‐use zones that are dynamic places where diverse activities occur. Forman (1995) in his book Land Mosaics however argues that these two objectives of land use management are entirely compatible. He postulates that an edge may be comprised of many small patches, corridors or convoluting boundaries of large patches. Many ecocentrists now consider humans to be just another species inhabiting the ecological environments of our cities. Hence habitat distribution theory may be useful in planning and designing better human habitats in a rapidly urbanising context like China. In less‐constructed environments, boundaries and edges provide important opportunities for the movement of multi‐habitat species into, along and from adjacent land use areas. For instance, invasive plants may escape into a national park from domestic gardens while wildlife may forage on garden plants in adjoining residential areas. It is at these interfaces that human interactions too flow backward and forward between land types. Spray applications of substances by farmers on cropland may disturb neighbouring homeowners while suburban residents may help themselves to farm produce on neighbouring orchards. Edge environments are some of the most dynamic and contested spaces in the landscape. Since most of us require access to at least two or three habitats diurnally, weekly, monthly or seasonally, their proximity to each other becomes critical in our attempts to improve the sustainability of our cities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Agricultural soils emit about 50% of the global flux of N2O attributable to human influence, mostly in response to nitrogen fertilizer use. Recent evidence that the relationship between N2O fluxes and N-fertilizer additions to cereal maize are non-linear provides an opportunity to estimate regional N2O fluxes based on estimates of N application rates rather than as a simple percentage of N inputs as used by the Intergovernmental Panel on Climate Change (IPCC). We combined a simple empirical model of N2O production with the SOCRATES soil carbon dynamics model to estimate N2O and other sources of Global Warming Potential (GWP) from cereal maize across 19,000 cropland polygons in the North Central Region (NCR) of the US over the period 1964–2005. Results indicate that the loading of greenhouse gases to the atmosphere from cereal maize production in the NCR was 1.7 Gt CO2e, with an average 268 t CO2e produced per tonne of grain. From 1970 until 2005, GHG emissions per unit product declined on average by 2.8 t CO2e ha−1 annum−1, coinciding with a stabilisation in N application rate and consistent increases in grain yield from the mid-1970’s. Nitrous oxide production from N fertilizer inputs represented 59% of these emissions, soil C decline (0–30 cm) represented 11% of total emissions, with the remaining 30% (517 Mt) from the combustion of fuel associated with farm operations. Of the 126 Mt of N fertilizer applied to cereal maize from 1964 to 2005, we estimate that 2.2 Mt N was emitted as N2O when using a non-linear response model, equivalent to 1.75% of the applied N.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of the present study was to increase understanding of the interaction of rural people and, specifically, women with the environment in a dry area in Sudan. The study that included both nomadic pastoralists and farmers aimed at answering two main research questions, namely: What kinds of roles have the local people, and the women in particular, had in land degradation in the study area and what kinds of issues would a gender-sensitive, forestry-related environmental rehabilitation intervention need to consider there? The study adopted the definition of land degradation as proposed by the United Nations Convention to Combat Desertification (UNCCD), which describes land degradation as reduction or loss the biological or economic productivity and complexity of land in arid, semi-arid and dry sub-humid areas. The Convention perceives desertification as land degradation. The dry study area in Sudan, South of the Sahara, has been the subject of land degradation or desertification discussions since the 1970s, and other studies have been also conducted to assess the degradation in the area. Nevertheless, the exact occurrence, scale and local significance of land degradation in the area is still unclear. This study explored how the rural population whose livelihood depended on the area, perceived environmental changes occurring there and compared their conceptions with other sources of information of the area such as research reports. The main fieldwork methods included interviews with open-ended questions and observation of people and the environment. The theoretical framework conceptualised the rural population as land users whose choices of environmental activities are affected by multiple factors in the social and biophysical contexts in which they live. It was emphasised that these factors have their own specific characteristics in different contexts, simultaneously recognising that there are also factors that generally affect environmental practices in various areas such as the land users' environmental literacy (conceptions of the environment), gender and livelihood needs. The people studied described that environmental changes, such as reduced vegetation cover and cropland production, had complicated the maintenance of their livelihoods in the study area. Some degraded sites were also identified through observations during the fieldwork. Whether a large-scale reduction of cropland productivity had occurred in the farmers' croplands remained, however, unclear. The study found that the environmental impact of the rural women's activities varied and was normally limited. The women's most significant environmental impact resulted from their cutting of trees, which was likely to contribute, at least in some places, to land degradation, affecting the environment together with climate and livestock. However, when a wider perspective is taken, it becomes questionable whether the women have really played roles in land degradation, since gender, poverty and the need to maintain livelihood had caused them to conduct environmentally harmful activities. The women have had, however, no power to change the causes of their activities. The findings further suggested that an inadequate availability of food was the most critical problem in the study area. Therefore, an environmental programme in the area was suggested to include technical measures to increase the productivity of croplands, opportunities for income generation and readiness to co-operate with other programmes to improve the local people's abilities to maintain their livelihoods. In order to protect the environment and alleviate the women's work burden, the introduction of fuel-saving stoves was also suggested. Furthermore, it was suggested that increased planting of trees on homesteads would be supported by an easy availability of tree seedlings. Planting trees on common property land was, however, perceived as extremely demanding in the study area, due to scarcity of such land. In addition, it became apparent that the local land users, and women in particular, needed to allocate their labour to maintain the immediate livelihood of their families and were not motivated to allocate their labour solely for environmental rehabilitation. Nonetheless, from the point of view of the existing social structures, women's active participation in a community-based environmental programme would be rather natural, particularly among the farmer women who had already formed a women's group and participated in communal decision making. Forming of a women group or groups was suggested to further support both the farmer women's and pastoral women's active participation within an environmental programme and their general empowerment. An Environmental programme would need to acknowledge that improving rural people's well-being and maintaining their livelihood in the study area requires development and co-operation with various sectors in Sudan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The indigenous cloud forests in the Taita Hills have suffered substantial degradation for several centuries due to agricultural expansion. Currently, only 1% of the original forested area remains preserved in this region. Furthermore, climate change imposes an imminent threat for local economy and environmental sustainability. In such circumstances, elaborating tools to conciliate socioeconomic growth and natural resources conservation is an enormous challenge. This dissertation tackles essential aspects for understanding the ongoing agricultural activities in the Taita Hills and their potential environmental consequences in the future. Initially, alternative methods were designed to improve our understanding of the ongoing agricultural activities. Namely, methods for agricultural survey planning and to estimate evapotranspiration were evaluated, taking into account a number of limitations regarding data and resources availability. Next, this dissertation evaluates how upcoming agricultural expansion, together with climate change, will affect the natural resources in the Taita Hills up to the year 2030. The driving forces of agricultural expansion in the region were identified as aiming to delineate future landscape scenarios and evaluate potential impacts from the soil and water conservation point of view. In order to investigate these issues and answer the research questions, this dissertation combined state of the art modelling tools with renowned statistical methods. The results indicate that, if current trends persist, agricultural areas will occupy roughly 60% of the study area by 2030. Although the simulated land use changes will certainly increase soil erosion figures, new croplands are likely to come up predominantly in the lowlands, which comprise areas with lower soil erosion potential. By 2030, rainfall erosivity is likely to increase during April and November due to climate change. Finally, this thesis addressed the potential impacts of agricultural expansion and climate changes on Irrigation Water Requirements (IWR), which is considered another major issue in the context of the relations between land use and climate. Although the simulations indicate that climate change will likely increase annual volumes of rainfall during the following decades, IWR will continue to increase due to agricultural expansion. By 2030, new cropland areas may cause an increase of approximately 40% in the annual volume of water necessary for irrigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Together with 106 farmers who started growing Jatropha (Jatropha curcas L.) in 20042006, this research sought to increase the knowledge around the real-life experience of Jatropha farming in the southern India states of Tamil Nadu and Andhra Pradesh. Launched as an alternative for diesel in India, Jatropha has been promoted as a non-edible plant that could grow on poor soils, yield oil-rich seeds for production of bio-diesel, and not compete directly with food production. Through interviews with the farmers, information was gathered regarding their socio-economic situation, the implementation and performance of their Jatropha plantations, and their reasons for continuing or discontinuing Jatropha cultivation. Results reveal that 82% of the farmers had substituted former cropland for their Jatropha cultivation. By 2010, 85% (n = 90) of the farmers who cultivated Jatropha in 2004 had stopped. Cultivating the crop did not give the economic returns the farmers anticipated, mainly due to a lack of information about the crop and its maintenance during cultivation and due to water scarcity. A majority of the farmers irrigated and applied fertilizer, and even pesticides. Many problems experienced by the farmers were due to limited knowledge about cultivating Jatropha caused by poor planning and implementation of the national Jatropha program. Extension services, subsidies, and other support were not provided as promised. The farmers who continued cultivation had means of income other than Jatropha and held hopes of a future Jatropha market. The lack of market structures, such as purchase agreements and buyers, as well as a low retail price for the seeds, were frequently stated as barriers to Jatropha cultivation. For Jatropha biodiesel to perform well, efforts are needed to improve yield levels and stability through genetic improvements and drought tolerance, as well as agriculture extension services to support adoption of the crop. Government programs will -probably be more effective if implementing biodiesel production is conjoined with stimulating the demand for Jatropha biodiesel. To avoid food-biofuel competition, additional measures may be needed such as land-use restrictions for Jatropha producers and taxes on biofuels or biofuel feedstocks to improve the competitiveness of the food sector compared to the bioenergy sector. (c) 2012 Society of Chemical Industry and John Wiley & Sons, Ltd

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Land use (LU) land cover (LC) information at a temporal scale illustrates the physical coverage of the Earth's terrestrial surface according to its use and provides the intricate information for effective planning and management activities. LULC changes are stated as local and location specific, collectively they act as drivers of global environmental changes. Understanding and predicting the impact of LULC change processes requires long term historical restorations and projecting into the future of land cover changes at regional to global scales. The present study aims at quantifying spatio temporal landscape dynamics along the gradient of varying terrains presented in the landscape by multi-data approach (MDA). MDA incorporates multi temporal satellite imagery with demographic data and other additional relevant data sets. The gradient covers three different types of topographic features, planes; hilly terrain and coastal region to account the significant role of elevation in land cover change. The seasonality is another aspect to be considered in the vegetation dominated landscapes; variations are accounted using multi seasonal data. Spatial patterns of the various patches are identified and analysed using landscape metrics to understand the forest fragmentation. The prediction of likely changes in 2020 through scenario analysis has been done to account for the changes, considering the present growth rates and due to the proposed developmental projects. This work summarizes recent estimates on changes in cropland, agricultural intensification, deforestation, pasture expansion, and urbanization as the causal factors for LULC change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantifying the isolated and integrated impacts of land use (LU) and climate change on streamflow is challenging as well as crucial to optimally manage water resources in river basins. This paper presents a simple hydrologic modeling-based approach to segregate the impacts of land use and climate change on the streamflow of a river basin. The upper Ganga basin (UGB) in India is selected as the case study to carry out the analysis. Streamflow in the river basin is modeled using a calibrated variable infiltration capacity (VIC) hydrologic model. The approach involves development of three scenarios to understand the influence of land use and climate on streamflow. The first scenario assesses the sensitivity of streamflow to land use changes under invariant climate. The second scenario determines the change in streamflow due to change in climate assuming constant land use. The third scenario estimates the combined effect of changing land use and climate over the streamflow of the basin. Based on the results obtained from the three scenarios, quantification of isolated impacts of land use and climate change on streamflow is addressed. Future projections of climate are obtained from dynamically downscaled simulations of six general circulation models (GCMs) available from the Coordinated Regional Downscaling Experiment (CORDEX) project. Uncertainties associated with the GCMs and emission scenarios are quantified in the analysis. Results for the case study indicate that streamflow is highly sensitive to change in urban areas and moderately sensitive to change in cropland areas. However, variations in streamflow generally reproduce the variations in precipitation. The combined effect of land use and climate on streamflow is observed to be more pronounced compared to their individual impacts in the basin. It is observed from the isolated effects of land use and climate change that climate has a more dominant impact on streamflow in the region. The approach proposed in this paper is applicable to any river basin to isolate the impacts of land use change and climate change on the streamflow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

涡度相关技术是唯一能直接测定大气与植被间CO2通量的标准方法。随着全球变化研究的深入,人类活动干扰下陆地生态系统碳通量研究越来越受到关注,对草地生态系统的研究更是备受关注。本研究选择位于内蒙古典型的农牧交错区——多伦县的典型克氏针茅草地和被开垦的农田为研究对象,利用涡度相关技术,结合各环境因子,在不同时间尺度上探讨了控制内蒙古草地生态系统碳通量可能的生理机制。利用一年多净生态系统CO2气体交换(NEE)通量的观测,量化了这个地区草地生态系统的碳储备量,并进一步阐明了开垦对该区域生态系统物质能量流动的影响。我们还利用Keeling同位素曲线与微气象技术相结合的方法把生态系统夜间呼吸区分为自养呼吸和异养呼吸;同时利用同化箱式法,把草地生态系统白天群落呼吸进行了区分,进一步了解了不同生态过程对净碳通量的贡献。 结果表明,控制该地区生态系统碳通量主要的环境因子是土壤含水量(VWC)和温度。两个生态系统的植被叶面积指数(LAI)和生物量在非干旱季都要高于干旱季,因而两个生态系统在非干旱季不同环境因子的不同梯度下的NEEmax都比干旱季的要高。两个生态系统NEE的最大日变幅和日最大值在非旱季与旱季十分接近,说明即使土壤水分有所改善,但由于这个地区贫瘠的土壤限制了生态系统的净碳交换量而使这两个生态系统的固碳能力依旧不高。无论是旱季还是非旱季,草地生态系统呼吸的温度敏感系数Q10都随土壤含水量的增加而增加,这除了水分的促进作用外,另外就是生长旺季根生物量的增加。而在两个生长季里农田生态系统的Q10都随土壤含水量的变化不是很规则,这主要是因为农作改变了植被类型和土壤的物理结构从而引起生态系统微环境、微生物活性以及根生物量的改变,结果影响生态系统呼吸对温度的敏感性。 在连续两个生长季里,两个生态系统碳通量随季节的变化都有明显的日变化,7月份的日变化最大,而且农田生态系统的NEE日变幅大于草地生态系统NEE的日变幅。两个生态系统每个月NEE的日最大值都出现在上午8~9点左右,而生态系统的呼吸(RE)的日最大值都发生在下午14~16点左右。冬季两个生态系统各组分碳通量的日进程几乎都没有差异,系统基本处于碳平衡状态。进入春季,幼小的植被限制了生态系统的碳同化。期间的耕作促进了土壤CO2的大量释放,同时较频繁的降雨不仅影响植被吸收光以进行光合固定碳,同时也进一步加大了农田CO2的释放,结果农田生态系统释放的CO2比草地生态系统多。夏季,两个生态系统都是吸收碳的库,农田生态系统因较高的LAI和较低的生态系统呼吸温度敏感性使其NEP远高于草地生态系统的NEP,是一个较强的碳库。秋末,草地生态系统几乎处于碳平衡的状态。农作物的收割,使得大量含不溶性物质较低枯叶和秸秆残留在地里,农田生态系统呼吸释放的碳量显著高于同期草地释放的碳量。通过2005~2006年对两个生态系统碳通量进行一整年的观测,发现两个生态系统年净固碳量相当,草地净固定71.3 g C m-2,农田净固定64.4 g C m-2。但秋季的收获使农田生态系统近70%的生物量被收走,降低了该系统的固碳能力。 为进一步了解不同生态过程对净碳通量的贡献量,我们利用浓度梯度-同位素法与微气象技术相结合的方法,初步将生态系统呼吸区分为自养呼吸和异养呼吸。草地生态系统在生长旺季自养呼吸占总呼吸80%以上,而农田生态系统在生长季阶段异养呼吸所占整个生态呼吸的比例从60%上升至作物成熟时的80%以上。降雨不仅显著增加草地生态系统呼吸的释放量,而且主要是显著增加了异养呼吸的释放量。此外,我们还利用同化箱式法对草地生态系统的群落呼吸进行区分,结果显示群落总呼吸(Re)有明显的季节变化,最高值在生长季中期。凋落物分解、土壤有机质呼吸、根呼吸和地上植被呼吸在整个生长季平均分别占总生态系统呼吸的19.4%、37.8%、9.8%和32.9%。构建各组分呼吸通量与温度的指数关系,结果显示根呼吸的温度敏感系数最大,土壤有机质的温度敏感性最低。降雨后首先促进了异养呼吸,随后植物的呼吸也开始变大,群落呼吸释放的最高峰出现在雨后第二天。 本研究初步分析了控制内蒙古农牧交错区草地生态系统碳通量的主要因子,量化了该区域草地生态系统的碳储备量,并进一步阐述了开垦对该区域生态系统碳通量的影响。同时尝试不同方法对生态系统碳通量进行了区分,得出了一些具有生态学意义的结果,为进一步探讨控制生态系统碳通量的生理机制提供了可能。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study was designed to assess the environmental impact of shrimp farming and implications on local livelihoods at the south-west coastal area of Bangladesh. All the stakeholders reported that shrimp farming negatively affected on the environment at the coastal area. The soil and water, fish habitation, agricultural cropland, grazing land, indigenous fish, household vegetations, trees and plants, land fertility and mangroves are affected negatively by the shrimp farming in the coastal area. About 44% of stakeholders agreed that mangroves were destroyed by the extension of shrimp farming in the study area. In the case of positive impact of shrimp farming on environment about 16% of stakeholders agreed that the household vegetations increased due to alternate rice and shrimp-prawn farming.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Effective management is a key to ensuring the current and future sustainability of land, water and energy resources. Identifying the complexities of such management is not an easy task, especially since past studies have focussed on studying these resources in isolation from one another. However, with rapid population growth and an increase in the awareness of a potential change in climatic conditions that may affect the demand for and supply of food, water and energy, there has been a growing need to integrate the planning decisions relating to these three resources. The paper shows the visualisation of linked resources by drawing a set of interconnected Sankey diagrams for energy, water and land. These track the changes from basic resource (e.g. coal, surface water, groundwater and cropland) through transformations (e.g. fuel refining and desalination) to final services (e.g. sustenance, hygiene and transportation). The focus here is on the water analysis aspects of the tool, which uses California as a detailed case study. The movement of water in California is traced from its source to its services by mapping the different transformations of water from when it becomes available, through its use, to further treatment, to final sinks (including recycling and reuse of that resource). The connections that water has with energy and land resources for the state of California are highlighted. This includes the amount of energy used to pump and treat water, and the amount of water used for energy production and the land resources which create a water demand to produce crops for food. By mapping water in this way, policy-makers and resource managers can more easily understand the competing uses of water (environment, agriculture and urban use) through the identification of the services it delivers (e.g. sanitation, agriculture, landscaping), the potential opportunities for improving the management of the resource (e.g. building new desalination plants, reducing the demand for services), and the connections with other resources which are often overlooked in a traditional sector-based management strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

根据米脂县1990—2007年粮食生产的相关数据,对该县耕地、人口和粮食生产动态变化以及粮食总产与其影响因素进行了灰色关联度分析。结果表明,退耕还林还草工程是耕地总面积迅速减少的主要原因;提高粮食单产保障粮食总产是实现粮食安全的最关键因子;持续增长的人口造成耕地的承载压力越来越大,并对该区实现粮食安全提出了更大的挑战。最后,根据分析结果提出了增加科技投入,提高单产,保护耕地,挖掘耕地潜力等措施以保障该区域的粮食安全,为政府部门制定相关粮食安全政策提供科学的理论依据。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

通过调查取样的方法对长武塬面不同土地利用条件下(作物地,果园,苜蓿地)土壤水分状况在0~600 cm范围深度内进行对比,结果显示:长武塬区小麦收获期,不同土地利用条件下土壤水分含量总体存在较大差异,其中春玉米地由于上年小麦收获后直到春玉米播种前土地休闲,土壤含水量显著高于其它土地利用方式。其它土地利用条件下土壤平均含水量相对较低,在0~300 cm的范围内含水量分布表现为果园>苜蓿地>小麦地。300 cm以下含水量表现为小麦地>果园>苜蓿地;同时,不同利用条件下土壤水分剖面低湿层的位置深度也不相同,小麦地土壤水分低湿层深度较果园地和多年苜蓿地浅,土壤水分剖面形态与分布特征受利用模式影响显著。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

为了探明多年免耕下农田恶性杂草发生的机理,提高保护性耕作下作物对农田恶性杂草持久稳定的抑制效果,依据陕西安塞田间4a的定位试验,采用小区调查取样和室内实验相结合的方法,从物种组成、密度特征、多样性以及相似性特征等方面,研究了黄土丘陵旱作农区大豆(Glycine max)、玉米(Zea mays)、红小豆(Semen Phaseoli)、马铃薯(Solanum tuberosum)在翻耕化肥(CF)、翻耕有机肥(CM)、翻耕无肥(CN)、免耕化肥(NF)、免耕有机肥(NM)、免耕无肥(NN)等水平下的农田土壤种子库。结果表明:(1)4种作物24种土样中共萌发出12个物种1965株幼苗,隶属于7科12属。1年生杂草占94%,棒头草(fugax nees ex steud)、苋菜(Acalypha australis)、马唐(Digitaria sanguinalis)、早熟禾(Poasphondylodes)为优势种,占87%。(2)在0~20cm土层不同处理间,土壤种子库的密度变动于(282.9±63.4)~(7482.5±1078.3)粒.m-2,其中,红小豆小区>马铃薯小区>大豆小区>玉米小区;翻耕小区>免...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

土壤微生物量是表征土壤生态系统中物质和能量流动的重要参数,研究黄土丘陵区坡耕地撂荒后微生物量及其活性的变化过程对认识该地区生态恢复过程中土壤质量的演变及其效果评价具有重要意义。【方法】采用时空互代法,以典型侵蚀环境纸坊沟流域生态恢复过程中不同年限的撂荒地为研究对象,选取坡耕地和天然侧柏林为参照,通过室内测试分析,并运用统计和相关分析等方法,研究坡耕地撂荒后土壤微生物量、呼吸强度、代谢商(qCO2)及土壤理化性质的演变特征。【结果】侵蚀环境下的坡耕地土壤微生物量含量偏低,土壤理化性质较差,撂荒后理化性质得到显著改善,微生物量碳(Cmic)在撂荒1a后显著增大,前7a较为剧烈,增幅较大,随后呈波动式上升,50a达到最大值;微生物量氮(Nmic)在撂荒初期增长缓慢,40a时才达到显著水平,微生物量磷(Pmic)在撂荒初期显著降低,5~7a达到最低值,随后逐渐上升,20~25a时和坡耕地没有显著差异,50a时达到最大值。撂荒50a时土壤Cmic、Nmic和Pmic分别较坡耕地增加166%、146%和52%,但仅为侧柏林的43.42%、45.06%和51.47%。呼吸强度在撂荒初期迅速增加,随后趋于稳定,与侧柏...