987 resultados para cosmology, numerical simulations, dark matter, dark energy, initial conditions
Resumo:
Models of dynamical dark energy unavoidably possess fluctuations in the energy density and pressure of that new component. In this paper we estimate the impact of dark energy fluctuations on the number of galaxy clusters in the Universe using a generalization of the spherical collapse model and the Press-Schechter formalism. The observations we consider are several hypothetical Sunyaev-Zel`dovich and weak lensing (shear maps) cluster surveys, with limiting masses similar to ongoing (SPT, DES) as well as future (LSST, Euclid) surveys. Our statistical analysis is performed in a 7-dimensional cosmological parameter space using the Fisher matrix method. We find that, in some scenarios, the impact of these fluctuations is large enough that their effect could already be detected by existing instruments such as the South Pole Telescope, when priors from other standard cosmological probes are included. We also show how dark energy fluctuations can be a nuisance for constraining cosmological parameters with cluster counts, and point to a degeneracy between the parameter that describes dark energy pressure on small scales (the effective sound speed) and the parameters describing its equation of state.
Resumo:
We investigate the influence of ail interaction between dark energy and dark matter upon the dynamics of galaxy clusters. We obtain file general Layser-Irvine equation in the presence of interactions, and find how, in that case. the virial theorem stands corrected. Using optical, X-ray and weak lensing data from 33 relaxed galaxy clusters, we put constraints on the strength of the coupling between the dark sectors. Available data Suggests that this coupling is small but positive, indicating that dark energy might be decaying into dark matter. Systematic effects between the several mass estimates, however, should be better known, before definitive conclusions oil the magnitude and significance of this coupling could be established. (C) 2009 Published by Elsevier B.V.
Resumo:
We examine different phenomenological interaction models for Dark Energy and Dark Matter by performing statistical joint analysis with observational data arising from the 182 Gold type la supernova samples, the shift parameter of the Cosmic Microwave Background given by the three-year Wilkinson Microwave Anisotropy Probe observations, the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey and age estimates of 35 galaxies. Including the time-dependent observable, we add sensitivity of measurement and give complementary results for the fitting. The compatibility among three different data sets seem to imply that the coupling between dark energy and dark matter is a small positive value, which satisfies the requirement to solve the coincidence problem and the second law of thermodynamics, being compatible with previous estimates. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
We present a thermodynamical description of the interaction between holographic dark energy and dark matter. If holographic dark energy and dark matter evolve separately, each of them remains in thermodynamic equilibrium. A small interaction between them may be viewed as a stable thermal fluctuation that brings a logarithmic correction to the equilibrium entropy. From this correction we obtain a physical expression for the interaction which is consistent with phenomenological descriptions and passes reasonably well the observational tests: (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Models where the dark matter component of the Universe interacts with the dark energy field have been proposed as a solution to the cosmic coincidence problem, since in the attractor regime both dark energy and dark matter scale in the same way. In these models the mass of the cold dark matter particles is a function of the dark energy field responsible for the present acceleration of the Universe, and different scenarios can be parametrized by how the mass of the cold dark matter particles evolves with time. In this article we study the impact of a constant coupling delta between dark energy and dark matter on the determination of a redshift dependent dark energy equation of state w(DE)(z) and on the dark matter density today from SNIa data. We derive an analytical expression for the luminosity distance in this case. In particular, we show that the presence of such a coupling increases the tension between the cosmic microwave background data from the analysis of the shift parameter in models with constant w(DE) and SNIa data for realistic values of the present dark matter density fraction. Thus, an independent measurement of the present dark matter density can place constraints on models with interacting dark energy.
Resumo:
We study non-linear structure formation in the presence of dark energy. The influence of dark energy on the growth of large-scale cosmological structures is exerted both through its background effect on the expansion rate, and through its perturbations. In order to compute the rate of formation of massive objects we employ the spherical collapse formalism, which we generalize to include fluids with pressure. We show that the resulting non-linear evolution equations are identical to the ones obtained in the pseudo-Newtonian approach to cosmological perturbations, in the regime where an equation of state serves to describe both the background pressure relative to density, and the pressure perturbations relative to the density perturbations. We then consider a wide range of constant and time-dependent equations of state (including phantom models) parametrized in a standard way, and study their impact on the non-linear growth of structure. The main effect is the formation of dark energy structure associated with the dark matter halo: non-phantom equations of state induce the formation of a dark energy halo, damping the growth of structures; phantom models, on the other hand, generate dark energy voids, enhancing structure growth. Finally, we employ the Press-Schechter formalism to compute how dark energy affects the number of massive objects as a function of redshift (number counts).
Resumo:
This work deals with a first-order formalism for dark energy and dust in standard cosmology, for models described by a real scalar field in the presence of dust in spatially flat space. The field dynamics may be standard or tachyonic, and we show how the equations of motion can be solved by first-order differential equations. We investigate a model to illustrate how the dustlike matter may affect the cosmic evolution using this framework.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
It has been proposed recently the existence of a non-minimal coupling between a canonical scalar field (quintessence) and gravity in the framework of teleparallel gravity, motivated by similar constructions in the context of General Relativity. The dynamics of the model, known as teleparallel dark energy, has been further developed, but no scaling attractor has been found. Here we consider a model in which the non-minimal coupling is ruled by a dynamically changing coefficient α≡f,φ/(f)1/2, with f(φ) an arbitrary function of the scalar field φ. It is shown that in this case the existence of scaling attractors is possible, which means that the universe will eventually enter these scaling attractors, regardless of the initial conditions. As a consequence, the cosmological coincidence problem could be alleviated without fine-tunings. © 2013 IOP Publishing Ltd and Sissa Medialab srl.
Resumo:
A detailed dynamical analysis of the tachyonic teleparallel dark energy model, in which a noncanonical scalar field (tachyon field) is nonminimally coupled to gravitation, is performed. It is found that, when the nonminimal coupling is ruled by a dynamically changing coefficient α≡f ,φ/√f, with f(φ) an arbitrary function of the scalar field φ, the Universe may experience a field-matter-dominated era φMDE, in which it has some portions of the energy density of φ in the matter dominated era. This is the most significant difference in relation to the so-called teleparallel dark energy scenario, in which a canonical scalar field (quintessence) is nonminimally coupled to gravitation. © 2013 American Physical Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In accelerating dark energy models, the estimates of the Hubble constant, Ho, from Sunyaev-Zerdovich effect (SZE) and X-ray surface brightness of galaxy clusters may depend on the matter content (Omega(M)), the curvature (Omega(K)) and the equation of state parameter GO. In this article, by using a sample of 25 angular diameter distances of galaxy clusters described by the elliptical beta model obtained through the SZE/X-ray technique, we constrain Ho in the framework of a general ACDM model (arbitrary curvature) and a flat XCDM model with a constant equation of state parameter omega = p(x)/rho(x). In order to avoid the use of priors in the cosmological parameters, we apply a joint analysis involving the baryon acoustic oscillations (BA()) and the (MB Shift Parameter signature. By taking into account the statistical and systematic errors of the SZE/X-ray technique we obtain for nonflat ACDM model H-0 = 74(-4.0)(+5.0) km s(-1) Mpc(-1) (1 sigma) whereas for a fiat universe with constant equation of state parameter we find H-0 = 72(-4.0)(+5.5) km s(-1) Mpc(-1)(1 sigma). By assuming that galaxy clusters are described by a spherical beta model these results change to H-0 = 6(-7.0)(+8.0) and H-0 = 59(-6.0)(+9.0) km s(-1) Mpc(-1)(1 sigma), respectively. The results from elliptical description are in good agreement with independent studies from the Hubble Space Telescope key project and recent estimates based on the Wilkinson Microwave Anisotropy Probe, thereby suggesting that the combination of these three independent phenomena provides an interesting method to constrain the Bubble constant. As an extra bonus, the adoption of the elliptical description is revealed to be a quite realistic assumption. Finally, by comparing these results with a recent determination for a, flat ACDM model using only the SZE/X-ray technique and BAO, we see that the geometry has a very weak influence on H-0 estimates for this combination of data.
Resumo:
We discuss two Lagrangian interacting dark energy models in the context of the holographic principle. The potentials of the interacting fields are constructed. The models are compared with CMB distance information, baryonic acoustic oscillations, lookback time and the Constitution supernovae sample. For both models, the results are consistent with a nonvanishing interaction in the dark sector of the Universe and the sign of coupling is consistent with dark energy decaying into dark matter, alleviating the coincidence problem-with more than 3 standard deviations of confidence for one of them. However, this is because the noninteracting holographic dark energy model is a bad fit to the combination of data sets used in this work as compared to the cosmological constant with cold dark matter model, so that one needs to introduce the interaction in order to improve this model.
Resumo:
The existence of inhomogeneities in the observed Universe modifies the distance-redshift relations thereby affecting the results of cosmological tests in comparison to the ones derived assuming spatially uniform models. By modeling the inhomogeneities through a Zeldovich-Kantowski-Dyer-Roeder approach which is phenomenologically characterized by a smoothness parameter alpha, we rediscuss the constraints on the cosmic parameters based on type Ia supernovae (SNe Ia) and gamma-ray bursts (GRBs) data. The present analysis is restricted to a flat Lambda CDM model with the reasonable assumption that Lambda does not clump. A chi(2) analysis using 557 SNe Ia data from the Union2 compilation data (R. Amanullah et al., Astrophys. J. 716, 712 (2010).) constrains the pair of parameters (Omega(m), alpha) to Omega(m) = 0.27(-0.03)(+0.08) (2 sigma) and alpha >= 0.25. A similar analysis based only on 59 Hymnium GRBs (H. Wei, J. Cosmol. Astropart. Phys. 08 (2010) 020.) constrains the matter density parameter to be Omega(m) = 0.35(-0.24)(+0.62) (2 sigma) while all values for the smoothness parameter are allowed. By performing a joint analysis, it is found that Omega(m) = 0.27(-0.06)(+0.06) and alpha >= 0.52. As a general result, although considering that current GRB data alone cannot constrain the smoothness alpha parameter, our analysis provides an interesting cosmological probe for dark energy even in the presence of inhomogeneities.