576 resultados para cortico-cerebellar


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditionally, subcortical structures such as the cerebellum are supposed to exert a modulatory effect on epileptic seizures, rather than being the primary seizure generator. We report a 14-month old girl presenting, since birth, with seizures symptomatic of a right cerebellar dysplasia, manifested as paroxystic contralateral hemifacial spasm and ipsilateral facial weakness. Multimodal imaging was used to investigate both anatomical landmarks related to the cerebellar lesion and mechanisms underlying seizure generation. Electric source imaging (ESI) supported the hypothesis of a right cerebellar epileptogenic generator in concordance with nuclear imaging findings; subsequently validated by intra-operative intralesional recordings. Diffusion spectrum imaging-related tractography (DSI) showed severe cerebellar structural abnormalities confirmed by histological examination. We suggest that hemispheric cerebellar lesions in cases like this are likely to cause epilepsy via an effect on the facial nuclei through ipsilateral and contralateral aberrant connections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patients with pathological laughter and crying have episodes of uncontrollable laughter, crying or both. Pathological laughter is a well-described entity secondary to various conditions such as multiple sclerosis, pseudo-bulbar palsy, cerebello-pontine angle tumours, clival chordomas and brainstem gliomas. Pathological crying is rare and there have been no previous reports of brainstem compression causing this entity. We report a patient who presented with pathological crying caused by a trigeminal schwannoma with a tumor-associated cyst indenting the pons. This case report confirms the involvement of the cortico-ponto-cerebellar pathways in the pathogenesis of pathological crying.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Neuroimaging studies show cerebellar activations in a wide range of cognitive tasks and patients with cerebellar lesions often present cognitive deficits suggesting a cerebellar role in higher-order cognition. OBJECTIVE: We used cathodal transcranial direct current stimulation (tDCS), known to inhibit neuronal excitability, over the cerebellum to investigate if cathodal tDCS impairs verbal working memory, an important higher-order cognitive faculty. METHOD: We tested verbal working memory as measured by forward and backward digit spans in 40 healthy young participants before and after applying cathodal tDCS (2 mA, stimulation duration 25 min) to the right cerebellum using a randomized, sham-controlled, double-blind, cross-over design. In addition, we tested the effect of cerebellar tDCS on word reading, finger tapping and a visually cued sensorimotor task. RESULTS: In line with lower digit spans in patients with cerebellar lesions, cerebellar tDCS reduced forward digit spans and blocked the practice dependent increase in backward digit spans. No effects of tDCS on word reading, finger tapping or the visually cued sensorimotor task were found. CONCLUSION: Our results support the view that the cerebellum contributes to verbal working memory as measured by forward and backward digit spans. Moreover, the induction of reversible "virtual cerebellar lesions" in healthy individuals by means of tDCS may improve our understanding of the mechanistic basis of verbal working memory deficits in patients with cerebellar lesions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The cerebellum is a complex structure that can be affected by several congenital and acquired diseases leading to alteration of its function and neuronal circuits. Identifying the structural bases of cerebellar neuronal networks in humans in vivo may provide biomarkers for diagnosis and management of cerebellar diseases. OBJECTIVES: To define the anatomy of intrinsic and extrinsic cerebellar circuits using high-angular resolution diffusion spectrum imaging (DSI). METHODS: We acquired high-resolution structural MRI and DSI of the cerebellum in four healthy female subjects at 3T. DSI tractography based on a streamline algorithm was performed to identify the circuits connecting the cerebellar cortex with the deep cerebellar nuclei, selected brainstem nuclei, and the thalamus. RESULTS: Using in-vivo DSI in humans we were able to demonstrate the structure of the following cerebellar neuronal circuits: (1) connections of the inferior olivary nucleus with the cerebellar cortex, and with the deep cerebellar nuclei (2) connections between the cerebellar cortex and the deep cerebellar nuclei, (3) connections of the deep cerebellar nuclei conveyed in the superior (SCP), middle (MCP) and inferior (ICP) cerebellar peduncles, (4) complex intersections of fibers in the SCP, MCP and ICP, and (5) connections between the deep cerebellar nuclei and the red nucleus and the thalamus. CONCLUSION: For the first time, we show that DSI tractography in humans in vivo is capable of revealing the structural bases of complex cerebellar networks. DSI thus appears to be a promising imaging method for characterizing anatomical disruptions that occur in cerebellar diseases, and for monitoring response to therapeutic interventions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To study with a non invasive method any potential radiological change on the superior cerebellar artery (SCA) in patients treated radiosurgically for classic trigeminal neuralgia (CTN).Materials and methods: A retrospective measure of maximal dose received by SCA was performed analyzing the treatment planning in 55 consecutive patients treated by Gamma Knife radiosurgery for an CTN, then, a prospective study was designed using high resolution MR, with T2 SPIR, T1 without and with gadolinium enhancement, Proton density, 3D TONE and MIP reconstructions. Inclusion criteria were: patients followed at our institution, follow-up of one year or more, dose received by the SCA of 15 Gy or more and voluntary patient participation in the study. Patients with repeated Gamma Knife radiosurgery for failure or recurrence were excluded. The end points were: SCA occlusion, stenosis or infarction in the territory supplied by SCA.Results: Sixteen patients were studied, with a mean follow-up of 25.2 months (12-42 months). The mean maximal dose received by the SCA was 57.5 Gy. (15-87 Gy). Among these 16 patients studied, neither obstruction of the SCA nor infarction was demonstrated. In one patient a suspicion of asymptomatic SCA stenosis was visualized distant to the irradiation field.Conclusions: SCA can receive a high dose of irradiation during radiosurgical treatment for CTN. This study does not confirm any vascular damage to the SCA after radiosurgery for CTN. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND This study was realized thanks to the collaboration of children and adolescents who had been resected from cerebellar tumors. The medulloblastoma group (CE+, n = 7) in addition to surgery received radiation and chemotherapy. The astrocytoma group (CE, n = 13) did not receive additional treatments. Each clinical group was compared in their executive functioning with a paired control group (n = 12). The performances of the clinical groups with respect to controls were compared considering the tumor's localization (vermis or hemisphere) and the affectation (or not) of the dentate nucleus. Executive variables were correlated with the age at surgery, the time between surgery-evaluation and the resected volume. METHODS The executive functioning was assessed by means of WCST, Complex Rey Figure, Controlled Oral Word Association Test (letter and animal categories), Digits span (WISC-R verbal scale) and Stroop test. These tests are very sensitive to dorsolateral PFC and/or to medial frontal cortex functions. The scores for the non-verbal Raven IQ were also obtained. Direct scores were corrected by age and transformed in standard scores using normative data. The neuropsychological evaluation was made at 3.25 (SD = 2.74) years from surgery in CE group and at 6.47 (SD = 2.77) in CE+ group. RESULTS The Medulloblastoma group showed severe executive deficit (

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurofilament (NF) proteins consist of three subunits of different molecular weights defined as NF-H, NF-M, and NF-L. They are typical structures of the neuronal cytoskeleton. Their immunocytochemical distribution during postnatal development of cat cerebellum was studied with several monoclonal and polyclonal antibodies against phosphorylated or unmodified sites. Expression and distribution of the triplet neurofilament proteins changed with maturation. Afferent mossy and climbing fibers in the medullary layer contained NF-M and NF-L already at birth, whereas NF-H appeared later. Within the first three postnatal weeks, all three subunits appeared in mossy and climbing fibers in the internal granular and molecular layers and in the axons of Purkinje cells. Axons of local circuit neurons such as basket cells expressed these proteins at the end of the first month, whereas parallel fibers expressed them last, at the beginning of the third postnatal month. Differential localization was especially observed for NF-H. Depending on phosphorylation, NF-H proteins were found in different axon types in climbing, mossy, and basket fibers or additionally in parallel fibers. A nonphosphorylated NF-H subunit was exclusively located in some Purkinje cells at early developmental stages and in some smaller interneurons later. A novel finding is the presence of a phosphorylation site in the NF-H subunit that is localized in dendrites of Purkinje cells but not in axons. Expression and phosphorylation of the NF-H subunit, especially, is cell-type specific and possibly involved in the adult-type stabilization of the axonal and dendritic cytoskeleton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquest treball ha estat dirigit a investigar les característiques de l’excitabilitat cortical del sistema motor en el dany axonal difús (DAD), conseqüència d’un Traumatisme Cranioencefàlic greu (TCE). Hem aplicat diversos paradigmes d'estimulació magnètica transcranial (TMS) de polsos simples, sobre l'escorça motora, per avaluar l'excitabilitat cortical i els mecanismes excitatoris i inhibitoris. Els paràmetres inclouen el llindar motor en repòs (MT), l’àrea sota la corba dels potencials motors evocats compostos (MEP), corbes d’estímul resposta, la variabilitat dels MEPs i la durada del període de silenci (SP). El grup de pacients en general va mostrar un MT més alt que els pacients, àrees dels MEPs més petites, i menor increment en les corbes en comparació amb els controls normals (p <0,05). Les alteracions en l'excitabilitat van ser significativament més pronunciades amb l'augment de la gravetat del DAD (p <0,005) i la presència de deteriorament motor (p <0,05), mentre que la coexistència de lesions focals no va afectar el grau dels canvis del MEPs. La variabilitat dels MEPs va ser significativament menor en el grup que presentava sols dèficit motor (P<0,05). La inhibició cortical, segons mostrava la durada del SP, no va mostrar diferències significatives en cap dels grups de pacients. En conclusió, les nostres troballes reforcen el concepte de que l’alteració dels fenòmens excitatoris i inhibitoris en l'escorça motora no son processos paral•lels, i aporten informació sobre els diferents patrons d’alteració en el DAD. A més, aquestes dades suggereixen que les alteracions en els mecanismes excitatoris corticoespinals es determinen principalment per la gravetat del DAD i mostren una relació significativa amb l’afectació clínica en relació a la funció motora després d'un TCE greu que afecta difusament les connexions corticals del sistema motor. Des d'un punt de vista clínic, aquest estudi indica que la neurofisiologia hauria de ser considerada com una exploració complementaria a l’exploració neurològica en el TCE greu.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To report a series of patients with cerebellar dysfunction and altered vision during motion, and to quantify their visual impairment in motion with a simple clinical test. METHODS: Twenty consecutive patients suffering from cerebellar dysfunction and altered vision during motion were examined between 1994 and 2007. A control group consisted of 20 age- and sex-matched healthy people. All patients had a full neuro-ophthalmic examination. Near visual acuity (NVA) was measured at rest (static NVA) and during chair rotation (dynamic NVA). Distance visual acuity (DVA) was measured at rest (static DVA) and during rotation of the patient's head (dynamic DVA). RESULTS: Only four of the 20 patients reported altered vision during motion spontaneously. The remaining 16 patients admitted this unusual visual disturbance only when asked specifically. All patients exhibited abnormal eye movements, including saccadic smooth pursuit (20/20), dysmetric saccades (15/20), nystagmus (19/20) and impaired suppression of vestibulo-ocular reflex (VOR) (20/20). During rotation of the examination chair (dynamic NVA), the drop in NVA averaged 5.6 lines (range 1-10 lines). During rotation of the patient's head (dynamic DVA), the drop in DVA averaged only 2.5 lines (range 0-10 lines). For the control group, there was no significant drop in NVA under dynamic conditions. CONCLUSION: Patients with cerebellar dysfunction rarely complain spontaneously of altered vision during motion. However, specific questioning may bring up this unusual symptom. The use of a simple clinical test, consisting of NVA measurement during rotation of the examination chair (dynamic NVA), allows practitioners to quantify the level of visual impairment in patients presenting altered VOR modulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We recently described the neuroimaging and clinical findings in 6 children with cerebellar clefts and proposed that they result from disruptive changes following prenatal cerebellar hemorrhage. We now report an additional series of 9 patients analyzing the clinical and neuroimaging findings. The clefts were located in the left cerebellar hemisphere in 5 cases, in the right in 3, and bilaterally in one child who had bilateral cerebellar hemorrhages as a preterm infant at 30 weeks gestation. In one patient born at 24 weeks of gestation a unilateral cerebellar hemorrhage has been found at the age of 4 months. Other findings included disordered alignment of the folia and fissures, an irregular gray/white matter junction, and abnormal arborization of the white matter in all cases. Supratentorial abnormalities were found in 4 cases. All but 2 patients were born at term. We confirm the distinct neuroimaging pattern of cerebellar clefts. Considering the documented fetal cerebellar hemorrhage in our first series, we postulate that cerebellar clefts usually represent residual disruptive changes after a prenatal cerebellar hemorrhage. Exceptionally, as now documented in 2 patients, cerebellar clefts can be found after neonatal cerebellar hemorrhages in preterm infants. The short-term outcome in these children was variable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visual perception of body motion is vital for everyday activities such as social interaction, motor learning or car driving. Tumors to the left lateral cerebellum impair visual perception of body motion. However, compensatory potential after cerebellar damage and underlying neural mechanisms remain unknown. In the present study, visual sensitivity to point-light body motion was psychophysically assessed in patient SL with dysplastic gangliocytoma (Lhermitte-Duclos disease) to the left cerebellum before and after neurosurgery, and in a group of healthy matched controls. Brain activity during processing of body motion was assessed by functional magnetic resonance imaging (MRI). Alterations in underlying cerebro-cerebellar circuitry were studied by psychophysiological interaction (PPI) analysis. Visual sensitivity to body motion in patient SL before neurosurgery was substantially lower than in controls, with significant improvement after neurosurgery. Functional MRI in patient SL revealed a similar pattern of cerebellar activation during biological motion processing as in healthy participants, but located more medially, in the left cerebellar lobules III and IX. As in normalcy, PPI analysis showed cerebellar communication with a region in the superior temporal sulcus, but located more anteriorly. The findings demonstrate a potential for recovery of visual body motion processing after cerebellar damage, likely mediated by topographic shifts within the corresponding cerebro-cerebellar circuitry induced by cerebellar reorganization. The outcome is of importance for further understanding of cerebellar plasticity and neural circuits underpinning visual social cognition.