985 resultados para correlation energy


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Titanium nitride (TiN), which is widely used for hard coatings, reportedly undergoes a pressure-induced structural phase transformation, from a NaCl to a CsCl structure, at similar to 7 GPa. In this paper, we use first-principles calculations based on density functional theory with a generalized gradient approximation of the exchange correlation energy to determine the structural stability of this transformation. Our results show that the stress required for this structural transformation is substantially lower (by more than an order of magnitude) when it is deviatoric in nature vis-a-vis that under hydrostatic pressure. Local stability of the structure is assessed with phonon dispersion determined at different pressures, and we find that CsCl structure of TiN is expected to distort after the transformation. From the electronic structure calculations, we estimate the electrical conductivity of TiN in the CsCl structure to be about 5 times of that in NaCl structure, which should be observable experimentally. (C) 2013 American Institute of Physics. http://dx.doi.org/10.1063/1.4798591]

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Optimized trial functions are used in quantum Monte Carlo and variational Monte Carlo calculations of the Li2(X 1Σ+g) potential curve. The trial functions used are a product of a Slater determinant of molecular orbitals multiplied by correlation functions of electron—nuclear and electron—electron separation. The parameters of the determinant and correlation functions are optimized simultaneously by reducing the deviations of the local energy EL (EL  Ψ−1THΨT, where ΨT denotes a trial function) over a fixed sample. At the equilibrium separation, the variational Monte Carlo and quantum Monte Carlo methods recover 68% and 98% of the correlation energy, respectively. At other points on the curves, these methods yield similar accuracies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Methods that exploit the intrinsic locality of molecular interactions show significant promise in making tractable the electronic structure calculation of large-scale systems. In particular, embedded density functional theory (e-DFT) offers a formally exact approach to electronic structure calculations in which the interactions between subsystems are evaluated in terms of their electronic density. In the following dissertation, methodological advances of embedded density functional theory are described, numerically tested, and applied to real chemical systems.

First, we describe an e-DFT protocol in which the non-additive kinetic energy component of the embedding potential is treated exactly. Then, we present a general implementation of the exact calculation of the non-additive kinetic potential (NAKP) and apply it to molecular systems. We demonstrate that the implementation using the exact NAKP is in excellent agreement with reference Kohn-Sham calculations, whereas the approximate functionals lead to qualitative failures in the calculated energies and equilibrium structures.

Next, we introduce density-embedding techniques to enable the accurate and stable calculation of correlated wavefunction (CW) in complex environments. Embedding potentials calculated using e-DFT introduce the effect of the environment on a subsystem for CW calculations (WFT-in-DFT). We demonstrate that WFT-in-DFT calculations are in good agreement with CW calculations performed on the full complex.

We significantly improve the numerics of the algorithm by enforcing orthogonality between subsystems by introduction of a projection operator. Utilizing the projection-based embedding scheme, we rigorously analyze the sources of error in quantum embedding calculations in which an active subsystem is treated using CWs, and the remainder using density functional theory. We show that the embedding potential felt by the electrons in the active subsystem makes only a small contribution to the error of the method, whereas the error in the nonadditive exchange-correlation energy dominates. We develop an algorithm which corrects this term and demonstrate the accuracy of this corrected embedding scheme.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We review the electronic structure of defects in aSi:H, aGaAs and aSi3N4, emphasising in aSi:H the doping mechanism, the evidence that its dangling bond defect has a small electron-lattice coupling and a positive correlation energy, and possible atomic mechanisms for the Staebler-Wronski effect. © 1985.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reaction mechanism of Pd(O)-catalyzed allene bis-selenation reactions is investigated by using density functional methods. The overall reaction mechanism has been examined. It is found that with the bulkier PMe3 ligand, the rate-determining step is the reductive elimination process, while allene insertion and reductive elimination processes are competitive for the rate-determining step with the PH3 ligand, indicating the importance of the ligand effect. For both cis and trans palladium complexes, allene insertion into the Pd-Se bond of the trans palladium complex using the internal carbon atom attached to the selenyl group is prefer-red among the four pathways of allene insertion processes. The formation of sigma-allyl and pi-allyl palladium complexes is favored over that of the sigma-vinyl palladium species. By using methylallene, the regioselectivity of monosubstituted allene insertion into the Pd-Se bond is analyzed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bond distances, dissociation energies, ionization potentials and electron affinities of 4d transition metal monoxides from YO to CdO and their positive and negative ions were studied by use of density functional methods B3LYP, BLYP, B3PW91, BPW91, B3P86, BP86, SVWN, MPW1PW91 and PBE1PBE. It was found that calculated properties are highly dependent on the functionals employed, especially for dissociation energy. For most neutral species, pure density functionals BLYP, BPW91 and BP86 have good performance in predicting dissociation energy than hybrid density functionals B3LYP, B3PW91 and B3P86. In addition, BLYP gives the largest bond distance compared with other density functional methods, while SVWN gives shortest bond distance, largest dissociation energy and electron affinity. For the ground state, the spin multiplicity of the charged species can be obtained by +/- 1 of their corresponding neutral species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bond distances, vibrational frequencies, electron affinities, ionization potentials, and dissociation energies of the diatomic 5d transition metal (except La) monoxides and their positively and negatively charged ions were studied by use of density functional methods B3LYP, BLYP, B3PW91, BPW91, B3P86, BP86, MPW1PW91, PBE1PBE, and SVWN. Our calculation shows that for each individual species, the calculated properties are quite sensitive to the method used. Compared with hybrid density functional method B3PW91 (B3P86), pure density functional method BPW91 (BP86) gives longer bond distance (lower vibrational frequency) from HfO to PtO for neutral species, HfO+ to IrO+ for cationic species, and HfO- to AuO- for anionic species. While for B3LYP and BLYP, the trend was observed for cationic species from HfO+ to IrO+ and anionic species from HfO- to AuO- (except TaO-), but not for neutrals. Pure density function methods BLYP, BPW91, and BP86 give larger dissociation energy compared with hybrid density functional methods B3LYP, B3PW91, and B3P86. SVWN in most cases gives the smallest bond distance, while BLYP gives the largest value. MPW1PW91 and PBE1PBE show the same performance in predicting the spectroscopic constants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Equilibrium geometries, vibrational frequencies and dissociation energies of the second row transition metal dimers (from Y-2 to Cd-2 except Tc-2) ere studied by use of density functional methods B3LYP, BLYP, B3PW91, BHLYP, BP86, B3P86, SVWN, MPW1PW91 and PBE1PBE. The accuracy DFT methods is found to be highly dependent on the functional employed, in particular for vibrational frequency and dissociation energy. In most cases, the predicted bond distance is in general agreement with experiment and previous theoretical results. For van der Waals dimer Cd-2, B3LYP and BLYP have excellent performance in predicting the bond distance. For Ag-2, all density functional methods used in this study perform well in producing the bond distance, vibrational frequency and dissociation energy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ground state geometries were searched for transition metal trimers Sc-3, Y-3, La-3, Lu-3, Ti-3, Zr-3, and Hf-3 by density functional methods. For all the studied trimers, our calculation indicates that the ground state geometries are either equilateral triangle (Zr-3 and Hf-3) or near equilateral triangle (Ti-3, Sc-3, Y-3, La-3, and Lu-3). For rare earth trimers Sc-3, Y-3, La-3, and Lu-3, isosceles triangle (near equilateral triangle) at quartet state is the ground state. Isosceles triangle at doublet state is the competitive candidate for the ground state. For Zr-3 and Hf-3, equilateral triangle at singlet state is the most stable. For Ti-3, isosceles triangle (near equilateral triangle) at quintet state gives the ground state. For Sc-3, Zr-3, and Hf-3, where experimental results are available, the predicted geometries are in agreement with experiment in which the ground state is equilateral triangle (Zr-3) or fluxional (Sc-3 and Hf-3). For Y-3, the calculated geometry is in agreement with experimental observation and previous theoretical study that Y-3 is a bent molecule for the ground state.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Equilibrium geometries, vibrational frequencies and dissociation energies of hafnium dimer and trimer were studied by density functional methods B3LYP, BLYP, B3PW91, BHLYP, BP86, B3P86, mPW1PW91 and PBE1PBE. The results indicate that singlet is the ground state both for hafnium dimer and for trimer. For hafnium dimer, the calculated bond distance is less sensitive to the methods used. Except at BHLYP level, the calculated vibrational frequency is comparable to the experimental value. For hafnium trimer, equilateral triangle with D-3h symmetry is slightly favored compared with isosceles triangle with C-2v, symmetry except at BHLYP level. This conclusion is in agreement with experiment in which the ground state of Hf-3 is fluxional and low-spin or closed shell is preferred.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La-2, Yb-2, and Lu-2 have been studied by use of the density-functional methods B3LYP, BLYP, B3PW91, BHLYP, BP86, B3P86, MPW1PW91, and PBE1PBE. In these density-functional methods, the exchange functional is from either Becke's three-parameter HF-DFT hybrid exchange functional (B3), pure DFT exchange functional of 1988 (B), a modification of the half-and-half HF/DFT hybrid method (BH), Perdew-Wang 1991 (PW91), or Barone's modified PW91 (MPW1), while the correlation functional is from either Lee, Yang, and Parr (LYP), Perdew-Wang 1991 (PW91), or Perdew 86 (P86). PBE1PBE is the generalized-gradient-approximation exchange-correlation functional of Perdew, Burke, and Ernzerhof. For La-2, the calculated bond distance is in reasonable agreement with the experiment, but the calculated vibrational frequency is underestimated significantly compared with the experiment. Only BP86 and B3P86 have the best performance in reproducing the experimental dissociation energy for La-2. For the van der Waals dimer Yb-2, three functionals, B3LYP, BLYP, and BHLYP have excellent performance in reproducing the spectroscopic constants compared with both the experiment and previous theoretical studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bond distances, vibrational frequencies and dissociation energies for the ground state of Lu-2 were studied by density functional methods B3LYP, B3PW91, BLYP, BHLYP, BP86, B3P86, MPW1PW91, PBE1PBE and SVWN with CEP-121G and SDD basis sets. Singlet state is predicted to be the most stable. CEP-121G has a better overall performance than SDD. At CEP-121G basis set, all density functional methods used in this study perform well in reproducing the spectroscopic constants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Geometries, vibrational frequencies, electron affinities, ionization potentials and dissociation energies of the title clusters in both neutral and positively and negatively charged states were studied by use of density functional theory. For both neutral and charged species, different initial isomers were studied in order to determine the structure with the lowest energy. Vibrational analysis was also performed in order to characterize these isomers. For Ta-2, Ta-Ta metallic bond is strengthened by adding or removing an electron, i.e. the charged species are much more stable than the neutral counterpart. For Ta-3, equilateral triangle with D-3h symmetry has the lowest energy for both neutral and charged species (near equilateral triangle for cation). TaO and its charged species have much larger dissociation energy compared with other tantalum oxides. For Ta2O and TaO2. structure with C-2v symmetry is much more stable than linear chains. For Ta3O, planar structure with doubly bridging oxygen atoms of C-2v, symmetry is the global minimum for both neutral and charged species. While for TaO3, three-dimensional structures are favored for both neutral (C-1 symmetry) and charged species (C-3v symmetry).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fixed-node diffusion Monte Carlo computations are used to determine the ground state energy and electron density for jellium spheres with up to N = 106 electrons and background densities corresponding to the electron gas parameter 1 less than or equal to r(s)less than or equal to5.62. We analyze the density and size dependence of the surface energy, and we extrapolate our data to the thermodynamic limit. The results agree well with the predictions of density functional computations using the local density approximation. In the case of N = 20, we extend our computation to higher densities and identify a transition between atomic- and jelliumlike nodal structures occurring at the background density corresponding to r(s)=0.13. In this case the local density approximation is unable to reproduce the changes in the correlation energy due to the discontinuous transition in the ground state nodal structure. We discuss the relevance of our results for nonlocal approximations to density functional theory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show that for a large class of exchange-correlation functionals the local exchange-correlation potential obtained within an optimized effective potential severely underestimates the band gap. On the other hand, the corresponding nonlocal potential obtained from a generalized Kohn-Sham scheme provides a much better description of the band gap, in good agreement with experiments. These results strongly indicate that a local exchange-correlation potential, however good the exchange-correlation approximation, cannot capture the delicate interplay between correlation effects and spatial localization in the KS band structure, unless the (cumbersome) contribution from the derivative discontinuity of the exchange-correlation energy functional is considered.