938 resultados para corner cube retroreflector
Resumo:
A method of analysing a 3-dimensional corner reflector antenna of arbitrary apex angle is given. Expressions have been obtained for the far field of the 3-dimensional corner reflector fed by a dipole. The radiation resistance and the directive gain of the antenna have been calculated. The method described is applicable even when the feed dipole is arbitrarily oriented. It is found that the radiation along a prescribed direction can be circularly polarised (right or left) by suitably orienting the feed dipole.
Resumo:
A method of analysing a 3-dimensional corner reflector antenna of arbitrary apex angle is given. Expressions have been obtained for the far field of the 3-dimensional corner reflector fed by a dipole. The radiation resistance and the directive gain of the antenna have been calculated. The method described is applicable even when the feed dipole is arbitrarily oriented. It is found that the radiation along a prescribed direction can be circularly polarised (right or left) by suitably orienting the feed dipole.
Resumo:
In November 2012, Queensland University of Technology in Australia launched a giant interactive learning environment known as The Cube. This article reports a phenomenographic investigation into visitors’ different experiences of learning in The Cube. At present very little is known about people’s learning experience in spaces featuring large interactive screens. We observed many visitors to The Cube and interviewed 26 people. Our analysis identified critical variation across the visitors’ experience of learning in The Cube. The findings are discussed as the learning strategy (in terms of Absorption, Exploration, Isolation and Collaboration); and the content learned (in terms of Technology, Skills and Topics). Other findings presented here are dimensions of the learning strategy and the content learned, with differing perspectives on each dimension. These outcomes provide early insights into the potential of giant interactive environments to enhance learning approaches and guide the design of innovative learning spaces in higher education.
Resumo:
Extraction of text areas from the document images with complex content and layout is one of the challenging tasks. Few texture based techniques have already been proposed for extraction of such text blocks. Most of such techniques are greedy for computation time and hence are far from being realizable for real time implementation. In this work, we propose a modification to two of the existing texture based techniques to reduce the computation. This is accomplished with Harris corner detectors. The efficiency of these two textures based algorithms, one based on Gabor filters and other on log-polar wavelet signature, are compared. A combination of Gabor feature based texture classification performed on a smaller set of Harris corner detected points is observed to deliver the accuracy and efficiency.
Resumo:
Local texture and microstructure was investigated to study the deformation mechanisms during equal channel angular extrusion of a high purity nickel single crystal of initial cube orientation. A detailed texture and microstructure analysis by various diffraction techniques revealed the complexity of the deformation patterns in different locations of the billet. A modeling approach, taking into account slip system activity, was used to interpret the development of this heterogeneous deformation.
Resumo:
This paper presents the details of an experimental study on punching shear strength and behaviour of reinforced concrete corner column connections in flat slabs; a quasi-empirical method is proposed for computing the punching shear strength. The method has also been extended for punching shear strength prediction at interior and edge column connections. The test results compare better with the strengths predicted by the proposed method than those by Ingvarson, Zaglool and Pollet available in the literature. Further, the experimental strengths of interior, edge and corner column connections have been compared with the strengths predicted by the proposed method and the two codes of practice, viz. ACI and BS code, to demonstrate the usefulness of the method.
Resumo:
This paper gives the details of the studies undertaken to examine the strength and behaviour of fibre-reinforced concrete corner column connections in flat slabs. Tests have been conducted on 16 specimens with varying reinforcement ratio, moment/shear ratio (load eccentricity) and volume fraction of fibres. A quasi-empirical method has been proposed for computing the punching shear strength. The method has also been extended to fibre-reinforced concrete interior column connections, tests on which are available in the literature. The test results have been compared with the strength predicted by the proposed method for corner column as well as interior column connections and a satisfactory agreement noticed.
Resumo:
Nanoindentation is used to explore the variation of mechanical properties associated with the dehydration process in sodium saccharin dihydrate. Upon indenting using a Berkovich tip, (011) and (101) faces exhibit explicit mechanical anisotropy that is consistent with the underlying crystal structure and intermolecular interactions. For freshly grown crystals, (011) is stiffer than (101) by 14%, while (101) is harder than (011) by 8%. Being a heavily hydrated system, the measured mechanical responses contain information pertinent to the fluidity associated with lattice water. Indentation on (011) with a sharp cube-corner tip induces a fluid flow; this observation is uncommon in molecular crystals. The crystals effloresce over a period of time with the generation of a more compact crystal structure and consequently increasing H and E.
Resumo:
Room temperature nanoindentation experiments, employing two different pyramidal (Berkovich and cube-corner) indenters, were performed on a Zr-based bulk metallic glass (BMG) to critically examine the possibility of indentation-induced nanocrystallization in BMGs. Cross-sectional transmission electron microscopy images obtained from high angle annular dark field ( HAADF) and high resolution (HR) modes clearly indicate to the occurrence of nanocrystallization. Pronounced nanocrystallite formation in the case of sharper cube-corner indenter suggests that the structural transformation is favored by the high strains introduced during nanoindentation. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
The symmetric group acts on the Cartesian product (S (2)) (d) by coordinate permutation, and the quotient space is homeomorphic to the complex projective space a'',P (d) . We used the case d=2 of this fact to construct a 10-vertex triangulation of a'',P (2) earlier. In this paper, we have constructed a 124-vertex simplicial subdivision of the 64-vertex standard cellulation of (S (2))(3), such that the -action on this cellulation naturally extends to an action on . Further, the -action on is ``good'', so that the quotient simplicial complex is a 30-vertex triangulation of a'',P (3). In other words, we have constructed a simplicial realization of the branched covering (S (2))(3)-> a'',P (3).
Resumo:
This paper presents a unified framework using the unit cube for measurement, representation and usage of the range of motion (ROM) of body joints with multiple degrees of freedom (d.o.f) to be used for digital human models (DHM). Traditional goniometry needs skill and kn owledge; it is intrusive and has limited applicability for multi-d.o.f. joints. Measurements using motion capture systems often involve complicated mathematics which itself need validation. In this paper we use change of orientation as the measure of rotation; this definition does not require the identification of any fixed axis of rotation. A two-d.o.f. joint ROM can be represented as a Gaussian map. Spherical polygon representation of ROM, though popular, remains inaccurate, vulnerable due to singularities on parametric sphere and difficult to use for point classification. The unit cube representation overcomes these difficulties. In the work presented here, electromagnetic trackers have been effectively used for measuring the relative orientation of a body segment of interest with respect to another body segment. The orientation is then mapped on a surface gridded cube. As the body segment is moved, the grid cells visited are identified and visualized. Using the visual display as a feedback, the subject is instructed to cover as many grid cells as he can. In this way we get a connected patch of contiguous grid cells. The boundary of this patch represents the active ROM of the concerned joint. The tracker data is converted into the motion of a direction aligned with the axis of the segment and a rotation about this axis later on. The direction identifies the grid cells on the cube and rotation about the axis is represented as a range and visualized using color codes. Thus the present methodology provides a simple, intuitive and accura te determination and representation of up to 3 d.o.f. joints. Basic results are presented for the shoulder. The measurement scheme to be used for wrist and neck, and approach for estimation of the statistical distribution of ROM for a given population are also discussed.
Resumo:
Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a data set to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap, we report on a between-subjects experiment comparing novice users' error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions, the error rates were lower when using the baseline representation. For complex questions where the participants needed an overall understanding of the spatiotemporal structure of the data set, the space time cube representation resulted in on average twice as fast response times with no difference in error rates compared to the baseline. These results provide an empirical foundation for the hypothesis that space time cube representation benefits users analyzing complex spatiotemporal patterns.