867 resultados para confidence intervals


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Industrial recurrent event data where an event of interest can be observed more than once in a single sample unit are presented in several areas, such as engineering, manufacturing and industrial reliability. Such type of data provide information about the number of events, time to their occurrence and also their costs. Nelson (1995) presents a methodology to obtain asymptotic confidence intervals for the cost and the number of cumulative recurrent events. Although this is a standard procedure, it can not perform well in some situations, in particular when the sample size available is small. In this context, computer-intensive methods such as bootstrap can be used to construct confidence intervals. In this paper, we propose a technique based on the bootstrap method to have interval estimates for the cost and the number of cumulative events. One of the advantages of the proposed methodology is the possibility for its application in several areas and its easy computational implementation. In addition, it can be a better alternative than asymptotic-based methods to calculate confidence intervals, according to some Monte Carlo simulations. An example from the engineering area illustrates the methodology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to search the orthodontic literature and determine the frequency of reporting of confidence intervals (CIs) in orthodontic journals with an impact factor. The six latest issues of the American Journal of Orthodontics and Dentofacial Orthopedics, the European Journal of Orthodontics, and the Angle Orthodontist were hand searched and the reporting of CIs, P values, and implementation of univariate or multivariate statistical analyses were recorded. Additionally, studies were classified according to the type/design as cross-sectional, case-control, cohort, and clinical trials, and according to the subject of the study as growth/genetics, behaviour/psychology, diagnosis/treatment, and biomaterials/biomechanics. The data were analyzed using descriptive statistics followed by univariate examination of statistical associations, logistic regression, and multivariate modelling. CI reporting was very limited and was recorded in only 6 per cent of the included published studies. CI reporting was independent of journal, study area, and design. Studies that used multivariate statistical analyses had a higher probability of reporting CIs compared with those using univariate statistical analyses. Misunderstanding of the use of P values and CIs may have important implications in implementation of research findings in clinical practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of many genetic studies is to locate the genomic regions (called quantitative trait loci, QTLs) that contribute to variation in a quantitative trait (such as body weight). Confidence intervals for the locations of QTLs are particularly important for the design of further experiments to identify the gene or genes responsible for the effect. Likelihood support intervals are the most widely used method to obtain confidence intervals for QTL location, but the non-parametric bootstrap has also been recommended. Through extensive computer simulation, we show that bootstrap confidence intervals are poorly behaved and so should not be used in this context. The profile likelihood (or LOD curve) for QTL location has a tendency to peak at genetic markers, and so the distribution of the maximum likelihood estimate (MLE) of QTL location has the unusual feature of point masses at genetic markers; this contributes to the poor behavior of the bootstrap. Likelihood support intervals and approximate Bayes credible intervals, on the other hand, are shown to behave appropriately.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Confidence intervals (CIs) are integral to the interpretation of the precision and clinical relevance of research findings. The aim of this study was to ascertain the frequency of reporting of CIs in leading prosthodontic and dental implantology journals and to explore possible factors associated with improved reporting. MATERIALS AND METHODS Thirty issues of nine journals in prosthodontics and implant dentistry were accessed, covering the years 2005 to 2012: The Journal of Prosthetic Dentistry, Journal of Oral Rehabilitation, The International Journal of Prosthodontics, The International Journal of Periodontics & Restorative Dentistry, Clinical Oral Implants Research, Clinical Implant Dentistry and Related Research, The International Journal of Oral & Maxillofacial Implants, Implant Dentistry, and Journal of Dentistry. Articles were screened and the reporting of CIs and P values recorded. Other information including study design, region of authorship, involvement of methodologists, and ethical approval was also obtained. Univariable and multivariable logistic regression was used to identify characteristics associated with reporting of CIs. RESULTS Interrater agreement for the data extraction performed was excellent (kappa = 0.88; 95% CI: 0.87 to 0.89). CI reporting was limited, with mean reporting across journals of 14%. CI reporting was associated with journal type, study design, and involvement of a methodologist or statistician. CONCLUSIONS Reporting of CI in implant dentistry and prosthodontic journals requires improvement. Improved reporting will aid appraisal of the clinical relevance of research findings by providing a range of values within which the effect size lies, thus giving the end user the opportunity to interpret the results in relation to clinical practice.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hierarchical linear growth model (HLGM), as a flexible and powerful analytic method, has played an increased important role in psychology, public health and medical sciences in recent decades. Mostly, researchers who conduct HLGM are interested in the treatment effect on individual trajectories, which can be indicated by the cross-level interaction effects. However, the statistical hypothesis test for the effect of cross-level interaction in HLGM only show us whether there is a significant group difference in the average rate of change, rate of acceleration or higher polynomial effect; it fails to convey information about the magnitude of the difference between the group trajectories at specific time point. Thus, reporting and interpreting effect sizes have been increased emphases in HLGM in recent years, due to the limitations and increased criticisms for statistical hypothesis testing. However, most researchers fail to report these model-implied effect sizes for group trajectories comparison and their corresponding confidence intervals in HLGM analysis, since lack of appropriate and standard functions to estimate effect sizes associated with the model-implied difference between grouping trajectories in HLGM, and also lack of computing packages in the popular statistical software to automatically calculate them. ^ The present project is the first to establish the appropriate computing functions to assess the standard difference between grouping trajectories in HLGM. We proposed the two functions to estimate effect sizes on model-based grouping trajectories difference at specific time, we also suggested the robust effect sizes to reduce the bias of estimated effect sizes. Then, we applied the proposed functions to estimate the population effect sizes (d ) and robust effect sizes (du) on the cross-level interaction in HLGM by using the three simulated datasets, and also we compared the three methods of constructing confidence intervals around d and du recommended the best one for application. At the end, we constructed 95% confidence intervals with the suitable method for the effect sizes what we obtained with the three simulated datasets. ^ The effect sizes between grouping trajectories for the three simulated longitudinal datasets indicated that even though the statistical hypothesis test shows no significant difference between grouping trajectories, effect sizes between these grouping trajectories can still be large at some time points. Therefore, effect sizes between grouping trajectories in HLGM analysis provide us additional and meaningful information to assess group effect on individual trajectories. In addition, we also compared the three methods to construct 95% confident intervals around corresponding effect sizes in this project, which handled with the uncertainty of effect sizes to population parameter. We suggested the noncentral t-distribution based method when the assumptions held, and the bootstrap bias-corrected and accelerated method when the assumptions are not met.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis proposes some confidence intervals for the mean of a positively skewed distribution. The following confidence intervals are considered: Student-t, Johnson-t, median-t, mad-t, bootstrap-t, BCA, T1 , T3 and six new confidence intervals, the median bootstrap-t, mad bootstrap-t, median T1, mad T1 , median T3 and the mad T3. A simulation study has been conducted and average widths, coefficient of variation of widths, and coverage probabilities were recorded and compared across confidence intervals. To compare confidence intervals, the width and coverage probabilities were compared so that smaller widths indicated a better confidence interval when coverage probabilities were the same. Results showed that the median T1 and median T3 outperformed other confidence intervals in terms of coverage probability and the mad bootstrap-t, mad-t, and mad T3 outperformed others in terms of width. Some real life data are considered to illustrate the findings of the thesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hoekstra et al. (Psychonomic Bulletin & Review, 2014, 21:1157–1164) surveyed the interpretation of confidence intervals (CIs) by first-year students, master students, and researchers with six items expressing misinterpretations of CIs. They asked respondents to answer all items, computed the number of items endorsed, and concluded that misinterpretation of CIs is robust across groups. Their design may have produced this outcome artifactually for reasons that we describe. This paper discusses first the two interpretations of CIs and, hence, why misinterpretation cannot be inferred from endorsement of some of the items. Next, a re-analysis of Hoekstra et al.’s data reveals some puzzling differences between first-year and master students that demand further investigation. For that purpose, we designed a replication study with an extended questionnaire including two additional items that express correct interpretations of CIs (to compare endorsement of correct vs. nominally incorrect interpretations) and we asked master students to indicate which items they would have omitted had they had the option (to distinguish deliberate from uninformed endorsement caused by the forced-response format). Results showed that incognizant first-year students endorsed correct and nominally incorrect items identically, revealing that the two item types are not differentially attractive superficially; in contrast, master students were distinctively more prone to endorsing correct items when their uninformed responses were removed, although they admitted to nescience more often that might have been expected. Implications for teaching practices are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We use asymptotic linearity to derive confidence intervals for large noncentrality parameters. These results enable us to measure relevance of effects and interactions in multifactors models when we get highly statistically significant the values of F tests statistics. We show how to use our approach by considering two sets of data as application examples.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A number of authors have proposed clinical trial designs involving the comparison of several experimental treatments with a control treatment in two or more stages. At the end of the first stage, the most promising experimental treatment is selected, and all other experimental treatments are dropped from the trial. Provided it is good enough, the selected experimental treatment is then compared with the control treatment in one or more subsequent stages. The analysis of data from such a trial is problematic because of the treatment selection and the possibility of stopping at interim analyses. These aspects lead to bias in the maximum-likelihood estimate of the advantage of the selected experimental treatment over the control and to inaccurate coverage for the associated confidence interval. In this paper, we evaluate the bias of the maximum-likelihood estimate and propose a bias-adjusted estimate. We also propose an approach to the construction of a confidence region for the vector of advantages of the experimental treatments over the control based on an ordering of the sample space. These regions are shown to have accurate coverage, although they are also shown to be necessarily unbounded. Confidence intervals for the advantage of the selected treatment are obtained from the confidence regions and are shown to have more accurate coverage than the standard confidence interval based upon the maximum-likelihood estimate and its asymptotic standard error.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Over the past 10 years or so, confidence intervals have become increasingly recognised in program evaluation and quantitative health measurement generally as the preferred way of reporting the accuracy of statistical estimates. Statisticians have found that the more traditional ways of reporting results - using P-values and hypothesis tests - are often very difficult to interpret and can be misleading. This is particularly the case when sample sizes are small and results are 'negative' (ie P>0.05); in these cases, a confidence interval can communicate much more information about the sample and, by inference, about the population. Despite this trend among statisticians and health promotion evaluators towards the use of confidence intervals, it is surprisingly difficult to find succinct and reasonably simple methods to actually compute a confidence interval. This is particularly the case for proportions or percentages. Much of the data which are analysed in health promotion are binary or categorical, rather than the quantities and continuous variables often found in laboratories or other branches of science, so there is a need for health promotion evaluators to be able to present confidence intervals for percentages or proportions. However, the most popular statistical analysis computer package among health promotion professionals, SPSS does not have a routine to compute a simple confidence interval for a proportion! To address this shortcoming, I present in this paper some fairly simple strategies for computing confidence intervals for population percentages, both manually and using the right computer software.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In a nonparametric setting, the functional form of the relationship between the response variable and the associated predictor variables is assumed to be unknown when data is fitted to the model. Non-parametric regression models can be used for the same types of applications such as estimation, prediction, calibration, and optimization that traditional regression models are used for. The main aim of nonparametric regression is to highlight an important structure in the data without any assumptions about the shape of an underlying regression function. Hence the nonparametric approach allows the data to speak for itself. Applications of sequential procedures to a nonparametric regression model at a given point are considered.

The primary goal of sequential analysis is to achieve a given accuracy by using the smallest possible sample sizes. These sequential procedures allow an experimenter to make decisions based on the smallest number of observations without compromising accuracy. In the nonparametric regression model with a random design based on independent and identically distributed pairs of observations (X ,Y ), where the regression function m(x) is given bym(x) = E(Y X = x), estimation of the Nadaraya-Watson kernel estimator (m (x)) NW and local linear kernel estimator (m (x)) LL for the curve m(x) is considered. In order to obtain asymptotic confidence intervals form(x), two stage sequential procedure is used under which some asymptotic properties of Nadaraya-Watson and local linear estimators have been obtained.

The proposed methodology is first tested with the help of simulated data from linear and nonlinear functions. Encouraged by the preliminary findings from simulation results, the proposed method is applied to estimate the nonparametric regression curve of CAPM.