991 resultados para computer profiling
Resumo:
The Ball-Larus path-profiling algorithm is an efficient technique to collect acyclic path frequencies of a program. However, longer paths -those extending across loop iterations - describe the runtime behaviour of programs better. We generalize the Ball-Larus profiling algorithm for profiling k-iteration paths - paths that can span up to to k iterations of a loop. We show that it is possible to number suchk-iteration paths perfectly, thus allowing for an efficient profiling algorithm for such longer paths. We also describe a scheme for mixed-mode profiling: profiling different parts of a procedure with different path lengths. Experimental results show that k-iteration profiling is realistic.
Resumo:
On-body sensor systems for sport are challenging since the sensors must be lightweight and small to avoid discomfort, and yet robust and highly accurate to withstand and capture the fast movements associated with sport. In this work, we detail our experience of building such an on-body system for track athletes. The paper describes the design, implementation and deployment of an on-body sensor system for sprint training sessions. We autonomously profile sprints to derive quantitative metrics to improve training sessions. Inexpensive Force Sensitive Resistors (FSRs) are used to capture foot events that are subsequently analysed and presented back to the coach. We show how to identify periods of sprinting from the FSR data and how to compute metrics such as ground contact time. We evaluate our system using force plates and show that millisecond-level accuracy is achievable when estimating contact times. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Load balancing is often used to ensure that nodes in a distributed systems are equally loaded. In this paper, we show that for real-time systems, load balancing is not desirable. In particular, we propose a new load-profiling strategy that allows the nodes of a distributed system to be unequally loaded. Using load profiling, the system attempts to distribute the load amongst its nodes so as to maximize the chances of finding a node that would satisfy the computational needs of incoming real-time tasks. To that end, we describe and evaluate a distributed load-profiling protocol for dynamically scheduling time-constrained tasks in a loosely-coupled distributed environment. When a task is submitted to a node, the scheduling software tries to schedule the task locally so as to meet its deadline. If that is not feasible, it tries to locate another node where this could be done with a high probability of success, while attempting to maintain an overall load profile for the system. Nodes in the system inform each other about their state using a combination of multicasting and gossiping. The performance of the proposed protocol is evaluated via simulation, and is contrasted to other dynamic scheduling protocols for real-time distributed systems. Based on our findings, we argue that keeping a diverse availability profile and using passive bidding (through gossiping) are both advantageous to distributed scheduling for real-time systems.
Resumo:
High-speed networks, such as ATM networks, are expected to support diverse Quality of Service (QoS) constraints, including real-time QoS guarantees. Real-time QoS is required by many applications such as those that involve voice and video communication. To support such services, routing algorithms that allow applications to reserve the needed bandwidth over a Virtual Circuit (VC) have been proposed. Commonly, these bandwidth-reservation algorithms assign VCs to routes using the least-loaded concept, and thus result in balancing the load over the set of all candidate routes. In this paper, we show that for such reservation-based protocols|which allow for the exclusive use of a preset fraction of a resource's bandwidth for an extended period of time-load balancing is not desirable as it results in resource fragmentation, which adversely affects the likelihood of accepting new reservations. In particular, we show that load-balancing VC routing algorithms are not appropriate when the main objective of the routing protocol is to increase the probability of finding routes that satisfy incoming VC requests, as opposed to equalizing the bandwidth utilization along the various routes. We present an on-line VC routing scheme that is based on the concept of "load profiling", which allows a distribution of "available" bandwidth across a set of candidate routes to match the characteristics of incoming VC QoS requests. We show the effectiveness of our load-profiling approach when compared to traditional load-balancing and load-packing VC routing schemes.
Resumo:
To support the diverse Quality of Service (QoS) requirements of real-time (e.g. audio/video) applications in integrated services networks, several routing algorithms that allow for the reservation of the needed bandwidth over a Virtual Circuit (VC) established on one of several candidate routes have been proposed. Traditionally, such routing is done using the least-loaded concept, and thus results in balancing the load across the set of candidate routes. In a recent study, we have established the inadequacy of this load balancing practice and proposed the use of load profiling as an alternative. Load profiling techniques allow the distribution of "available" bandwidth across a set of candidate routes to match the characteristics of incoming VC QoS requests. In this paper we thoroughly characterize the performance of VC routing using load profiling and contrast it to routing using load balancing and load packing. We do so both analytically and via extensive simulations of multi-class traffic routing in Virtual Path (VP) based networks. Our findings confirm that for routing guaranteed bandwidth flows in VP networks, load balancing is not desirable as it results in VP bandwidth fragmentation, which adversely affects the likelihood of accepting new VC requests. This fragmentation is more pronounced when the granularity of VC requests is large. Typically, this occurs when a common VC is established to carry the aggregate traffic flow of many high-bandwidth real-time sources. For VP-based networks, our simulation results show that our load-profiling VC routing scheme performs better or as well as the traditional load-balancing VC routing in terms of revenue under both skewed and uniform workloads. Furthermore, load-profiling routing improves routing fairness by proactively increasing the chances of admitting high-bandwidth connections.
Resumo:
Traditionally, attacks on cryptographic algorithms looked for mathematical weaknesses in the underlying structure of a cipher. Side-channel attacks, however, look to extract secret key information based on the leakage from the device on which the cipher is implemented, be it smart-card, microprocessor, dedicated hardware or personal computer. Attacks based on the power consumption, electromagnetic emanations and execution time have all been practically demonstrated on a range of devices to reveal partial secret-key information from which the full key can be reconstructed. The focus of this thesis is power analysis, more specifically a class of attacks known as profiling attacks. These attacks assume a potential attacker has access to, or can control, an identical device to that which is under attack, which allows him to profile the power consumption of operations or data flow during encryption. This assumes a stronger adversary than traditional non-profiling attacks such as differential or correlation power analysis, however the ability to model a device allows templates to be used post-profiling to extract key information from many different target devices using the power consumption of very few encryptions. This allows an adversary to overcome protocols intended to prevent secret key recovery by restricting the number of available traces. In this thesis a detailed investigation of template attacks is conducted, along with how the selection of various attack parameters practically affect the efficiency of the secret key recovery, as well as examining the underlying assumption of profiling attacks in that the power consumption of one device can be used to extract secret keys from another. Trace only attacks, where the corresponding plaintext or ciphertext data is unavailable, are then investigated against both symmetric and asymmetric algorithms with the goal of key recovery from a single trace. This allows an adversary to bypass many of the currently proposed countermeasures, particularly in the asymmetric domain. An investigation into machine-learning methods for side-channel analysis as an alternative to template or stochastic methods is also conducted, with support vector machines, logistic regression and neural networks investigated from a side-channel viewpoint. Both binary and multi-class classification attack scenarios are examined in order to explore the relative strengths of each algorithm. Finally these machine-learning based alternatives are empirically compared with template attacks, with their respective merits examined with regards to attack efficiency.
Resumo:
Obtaining automatic 3D profile of objects is one of the most important issues in computer vision. With this information, a large number of applications become feasible: from visual inspection of industrial parts to 3D reconstruction of the environment for mobile robots. In order to achieve 3D data, range finders can be used. Coded structured light approach is one of the most widely used techniques to retrieve 3D information of an unknown surface. An overview of the existing techniques as well as a new classification of patterns for structured light sensors is presented. This kind of systems belong to the group of active triangulation method, which are based on projecting a light pattern and imaging the illuminated scene from one or more points of view. Since the patterns are coded, correspondences between points of the image(s) and points of the projected pattern can be easily found. Once correspondences are found, a classical triangulation strategy between camera(s) and projector device leads to the reconstruction of the surface. Advantages and constraints of the different patterns are discussed
Resumo:
Individual identification via DNA profiling is important in molecular ecology, particularly in the case of noninvasive sampling. A key quantity in determining the number of loci required is the probability of identity (PIave), the probability of observing two copies of any profile in the population. Previously this has been calculated assuming no inbreeding or population structure. Here we introduce formulae that account for these factors, whilst also accounting for relatedness structure in the population. These formulae are implemented in API-CALC 1.0, which calculates PIave for either a specified value, or a range of values, for F-IS and F-ST.
Resumo:
The assessment of chess players is an increasingly attractive opportunity and an unfortunate necessity. The chess community needs to limit potential reputational damage by inhibiting cheating and unjustified accusations of cheating: there has been a recent rise in both. A number of counter-intuitive discoveries have been made by benchmarking the intrinsic merit of players’ moves: these call for further investigation. Is Capablanca actually, objectively the most accurate World Champion? Has ELO rating inflation not taken place? Stimulated by FIDE/ACP, we revisit the fundamentals of the subject to advance a framework suitable for improved standards of computational experiment and more precise results. Other domains look to chess as the demonstrator of good practice, including the rating of professionals making high-value decisions under pressure, personnel evaluation by Multichoice Assessment and the organization of crowd-sourcing in citizen science projects. The ‘3P’ themes of performance, prediction and profiling pervade all these domains.
Resumo:
Collaborative recommendation is one of widely used recommendation systems, which recommend items to visitor on a basis of referring other's preference that is similar to current user. User profiling technique upon Web transaction data is able to capture such informative knowledge of user task or interest. With the discovered usage pattern information, it is likely to recommend Web users more preferred content or customize the Web presentation to visitors via collaborative recommendation. In addition, it is helpful to identify the underlying relationships among Web users, items as well as latent tasks during Web mining period. In this paper, we propose a Web recommendation framework based on user profiling technique. In this approach, we employ Probabilistic Latent Semantic Analysis (PLSA) to model the co-occurrence activities and develop a modified k-means clustering algorithm to build user profiles as the representatives of usage patterns. Moreover, the hidden task model is derived by characterizing the meaningful latent factor space. With the discovered user profiles, we then choose the most matched profile, which possesses the closely similar preference to current user and make collaborative recommendation based on the corresponding page weights appeared in the selected user profile. The preliminary experimental results performed on real world data sets show that the proposed approach is capable of making recommendation accurately and efficiently.