907 resultados para computationally efficient algorithm


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bergman cyclization of large polycyclic enediyne systems that mimic the cores of the enediyne anticancer antibiotics was studied using the ONIOM hybrid method. Tests on small enediynes show that ONIOM can accurately match experimental data. The effect of the triggering reaction in the natural products is investigated, and we support the argument that it is strain effects that lower the cyclization barrier. The barrier for the triggered molecule is very low, leading to a reasonable half-life at biological temperatures. No evidence is found that would suggest a concerted cyclization/H-atom abstraction mechanism is necessary for DNA cleavage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past 7 years, the enediyne anticancer antibiotics have been widely studied due to their DNA cleaving ability. The focus of these antibiotics, represented by kedarcidin chromophore, neocarzinostatin chromophore, calicheamicin, esperamicin A, and dynemicin A, is on the enediyne moiety contained within each of these antibiotics. In its inactive form, the moiety is benign to its environment. Upon suitable activation, the system undergoes a Bergman cycloaromatization proceeding through a 1,4-dehydrobenzene diradical intermediate. It is this diradical intermediate that is thought to cleave double-stranded dna through hydrogen atom abstraction. Semiempirical, semiempiricalci, Hartree–Fock ab initio, and mp2 electron correlation methods have been used to investigate the inactive hex-3-ene-1,5-diyne reactant, the 1,4-dehydrobenzene diradical, and a transition state structure of the Bergman reaction. Geometries calculated with different basis sets and by semiempirical methods have been used for single-point calculations using electron correlation methods. These results are compared with the best experimental and theoretical results reported in the literature. Implications of these results for computational studies of the enediyne anticancer antibiotics are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A computationally efficient procedure for modeling the alkaline hydrolysis of esters is proposed based on calculations performed on methyl acetate and methyl benzoate systems. Extensive geometry and energy comparisons were performed on the simple ester methyl acetate. The effectiveness of performing high level single point ab initio energy calculations on the geometries obtained from semiempirical and ab initio methods was determined. The AM1 and PM3 semiempirical methods are evaluated for their ability to model the transition states and intermediates for ester hydrolysis. The Cramer/Truhlar SM3 solvation method was used to determine activation energies. The most computationally efficient way to model the transition states of large esters is to use the PM3 method. The PM3 transition structure can then be used as a template for the design of haptens capable of inducing catalytic antibodies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phys. Rev. E 85, 026214-026219 (2012) Desarrollo de un nuevo y eficiente método para la construcción de funciones de scar a lo largo de las órtbitas periódicas inestables de sistemas clásicamente caóticos

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Outliers are objects that show abnormal behavior with respect to their context or that have unexpected values in some of their parameters. In decision-making processes, information quality is of the utmost importance. In specific applications, an outlying data element may represent an important deviation in a production process or a damaged sensor. Therefore, the ability to detect these elements could make the difference between making a correct and an incorrect decision. This task is complicated by the large sizes of typical databases. Due to their importance in search processes in large volumes of data, researchers pay special attention to the development of efficient outlier detection techniques. This article presents a computationally efficient algorithm for the detection of outliers in large volumes of information. This proposal is based on an extension of the mathematical framework upon which the basic theory of detection of outliers, founded on Rough Set Theory, has been constructed. From this starting point, current problems are analyzed; a detection method is proposed, along with a computational algorithm that allows the performance of outlier detection tasks with an almost-linear complexity. To illustrate its viability, the results of the application of the outlier-detection algorithm to the concrete example of a large database are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose an algorithm for partitioning parameterized orthogonal polygons into rectangles. The algorithm is based on the plane-sweep technique and can be used for partitioning polygons which contain holes. The input to the algorithm consists of the contour of a parameterized polygon to be partitioned and the constraints for those parameters which reside in the contour. The algorithm uses horizontal cuts only and generates a minimum number of rectangles whose union is the original orthogonal polygon. The proposed algorithm can be used as the basis to build corner stitching data structure for parameterized VLSI layouts and has been implemented in Java programming language. Copyright © 2010 ACM, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many practical routing algorithms are heuristic, adhoc and centralized, rendering generic and optimal path configurations difficult to obtain. Here we study a scenario whereby selected nodes in a given network communicate with fixed routers and employ statistical physics methods to obtain optimal routing solutions subject to a generic cost. A distributive message-passing algorithm capable of optimizing the path configuration in real instances is devised, based on the analytical derivation, and is greatly simplified by expanding the cost function around the optimized flow. Good algorithmic convergence is observed in most of the parameter regimes. By applying the algorithm, we study and compare the pros and cons of balanced traffic configurations to that of consolidated traffic, which provides important implications to practical communication and transportation networks. Interesting macroscopic phenomena are observed from the optimized states as an interplay between the communication density and the cost functions used. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficient numerical models facilitate the study and design of solid oxide fuel cells (SOFCs), stacks, and systems. Whilst the accuracy and reliability of the computed results are usually sought by researchers, the corresponding modelling complexities could result in practical difficulties regarding the implementation flexibility and computational costs. The main objective of this article is to adapt a simple but viable numerical tool for evaluation of our experimental rig. Accordingly, a model for a multi-layer SOFC surrounded by a constant temperature furnace is presented, trained and validated against experimental data. The model consists of a four-layer structure including stand, two interconnects, and PEN (Positive electrode-Electrolyte-Negative electrode); each being approximated by a lumped parameter model. The heating process through the surrounding chamber is also considered. We used a set of V-I characteristics data for parameter adjustment followed by model verification against two independent sets of data. The model results show a good agreement with practical data, offering a significant improvement compared to reduced models in which the impact of external heat loss is neglected. Furthermore, thermal analysis for adiabatic and non-adiabatic process is carried out to capture the thermal behaviour of a single cell followed by a polarisation loss assessment. Finally, model-based design of experiment is demonstrated for a case study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of interaction neighborhood estimation from the partial observation of a finite number of realizations of a random field. We introduce a model selection rule to choose estimators of conditional probabilities among natural candidates. Our main result is an oracle inequality satisfied by the resulting estimator. We use then this selection rule in a two-step procedure to evaluate the interacting neighborhoods. The selection rule selects a small prior set of possible interacting points and a cutting step remove from this prior set the irrelevant points. We also prove that the Ising models satisfy the assumptions of the main theorems, without restrictions on the temperature, on the structure of the interacting graph or on the range of the interactions. It provides therefore a large class of applications for our results. We give a computationally efficient procedure in these models. We finally show the practical efficiency of our approach in a simulation study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new version of the hglm package for fittinghierarchical generalized linear models (HGLM) with spatially correlated random effects. A CAR family for conditional autoregressive random effects was implemented. Eigen decomposition of the matrix describing the spatial structure (e.g. the neighborhood matrix) was used to transform the CAR random effectsinto an independent, but heteroscedastic, gaussian random effect. A linear predictor is fitted for the random effect variance to estimate the parameters in the CAR model.This gives a computationally efficient algorithm for moderately sized problems (e.g. n<5000).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new version (> 2.0) of the hglm package for fitting hierarchical generalized linear models (HGLMs) with spatially correlated random effects. CAR() and SAR() families for conditional and simultaneous autoregressive random effects were implemented. Eigen decomposition of the matrix describing the spatial structure (e.g., the neighborhood matrix) was used to transform the CAR/SAR random effects into an independent, but eteroscedastic, Gaussian random effect. A linear predictor is fitted for the random effect variance to estimate the parameters in the CAR and SAR models. This gives a computationally efficient algorithm for moderately sized problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automatic video segmentation plays a vital role in sports videos annotation. This paper presents a fully automatic and computationally efficient algorithm for analysis of sports videos. Various methods of automatic shot boundary detection have been proposed to perform automatic video segmentation. These investigations mainly concentrate on detecting fades and dissolves for fast processing of the entire video scene without providing any additional feedback on object relativity within the shots. The goal of the proposed method is to identify regions that perform certain activities in a scene. The model uses some low-level feature video processing algorithms to extract the shot boundaries from a video scene and to identify dominant colours within these boundaries. An object classification method is used for clustering the seed distributions of the dominant colours to homogeneous regions. Using a simple tracking method a classification of these regions to active or static is performed. The efficiency of the proposed framework is demonstrated over a standard video benchmark with numerous types of sport events and the experimental results show that our algorithm can be used with high accuracy for automatic annotation of active regions for sport videos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Application of optimization algorithm to PDE modeling groundwater remediation can greatly reduce remediation cost. However, groundwater remediation analysis requires a computational expensive simulation, therefore, effective parallel optimization could potentially greatly reduce computational expense. The optimization algorithm used in this research is Parallel Stochastic radial basis function. This is designed for global optimization of computationally expensive functions with multiple local optima and it does not require derivatives. In each iteration of the algorithm, an RBF is updated based on all the evaluated points in order to approximate expensive function. Then the new RBF surface is used to generate the next set of points, which will be distributed to multiple processors for evaluation. The criteria of selection of next function evaluation points are estimated function value and distance from all the points known. Algorithms created for serial computing are not necessarily efficient in parallel so Parallel Stochastic RBF is different algorithm from its serial ancestor. The application for two Groundwater Superfund Remediation sites, Umatilla Chemical Depot, and Former Blaine Naval Ammunition Depot. In the study, the formulation adopted treats pumping rates as decision variables in order to remove plume of contaminated groundwater. Groundwater flow and contamination transport is simulated with MODFLOW-MT3DMS. For both problems, computation takes a large amount of CPU time, especially for Blaine problem, which requires nearly fifty minutes for a simulation for a single set of decision variables. Thus, efficient algorithm and powerful computing resource are essential in both cases. The results are discussed in terms of parallel computing metrics i.e. speedup and efficiency. We find that with use of up to 24 parallel processors, the results of the parallel Stochastic RBF algorithm are excellent with speed up efficiencies close to or exceeding 100%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a simple and computationally efficient construction algorithm for two class linear-in-the-parameters classifiers. In order to optimize model generalization, a forward orthogonal selection (OFS) procedure is used for minimizing the leave-one-out (LOO) misclassification rate directly. An analytic formula and a set of forward recursive updating formula of the LOO misclassification rate are developed and applied in the proposed algorithm. Numerical examples are used to demonstrate that the proposed algorithm is an excellent alternative approach to construct sparse two class classifiers in terms of performance and computational efficiency.