932 resultados para compression tests


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper emphasizes the influence of micro mechanisms of failure of a cellular material on its phenomenological response. Most of the applications of cellular materials comprise a compression loading. Thus, the study focuses on the influence of the anisotropy in the mechanical behavior of cellular material under cyclic compression loadings. For this study, a Digital Image Correlation (DIC) technique (named Correli) was applied, as well as SEM (Scanning Electron Microscopy) images were analyzed. The experimental results are discussed in detail for a closed-cell rigid poly (vinyl chloride) (PVC) foam, showing stress-strain curves in different directions and why the material can be assumed as transversely isotropic. Besides, the present paper shows elastic and plastic Poisson's ratios measured in different planes, explaining why the plastic Poisson's ratios approach to zero. Yield fronts created by the compression loadings in different directions and the influence of spring-back phenomenon on hardening curves are commented, also.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ageing societies suffer from an increasing incidence of bone fractures. Bone strength depends on the amount of mineral measured by clinical densitometry, but also on the micromechanical properties of the hierarchical organization of bone. Here, we investigate the mechanical response under monotonic and cyclic compression of both single osteonal lamellae and macroscopic samples containing numerous osteons. Micropillar compression tests in a scanning electron microscope, microindentation and macroscopic compression tests were performed on dry ovine bone to identify the elastic modulus, yield stress, plastic deformation, damage accumulation and failure mechanisms. We found that isolated lamellae exhibit a plastic behaviour, with higher yield stress and ductility but no damage. In agreement with a proposed rheological model, these experiments illustrate a transition from a ductile mechanical behaviour of bone at the microscale to a quasi-brittle response driven by the growth of cracks along interfaces or in the vicinity of pores at the macroscale.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Result of impact and compression tests on Chojuro, Twentieth Century, Tsu Li, and Ya Li varieties of Asian pears indicate that Chojuro pears are the firmest and most resistant to mechanical damage. At the time of harvest, Tsu Li and Ya Li pears could resist mechanical damage nearly as well as Chojuro pears, but they become more susceptible to bruising in cold storage. Twentieth Century pears are most sensitive to impact and compression bruising. Increased time in the ripening room produces more softening and increased bruise resistance of Chojuro and Twentieth Century pears than of Tsu Li and Ya Li pears.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of the temperature on the compressive stress–strain behavior of Al/SiC nanoscale multilayers was studied by means of micropillar compression tests at 23 °C and 100 °C. The multilayers (composed of alternating layers of 60 nm in thickness of nanocrystalline Al and amorphous SiC) showed a very large hardening rate at 23 °C, which led to a flow stress of 3.1 ± 0.2 GPa at 8% strain. However, the flow stress (and the hardening rate) was reduced by 50% at 100 °C. Plastic deformation of the Al layers was the dominant deformation mechanism at both temperatures, but the Al layers were extruded out of the micropillar at 100 °C, while Al plastic flow was constrained by the SiC elastic layers at 23 °C. Finite element simulations of the micropillar compression test indicated the role played by different factors (flow stress of Al, interface strength and friction coefficient) on the mechanical behavior and were able to rationalize the differences in the stress–strain curves between 23 °C and 100 °C.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Los sensores de fibra óptica son una tecnología que ha madurado en los últimos años, sin embargo, se requiere un mayor desarrollo de aplicaciones para materiales naturales como las rocas, que por ser agregados complejos pueden contener partículas minerales y fracturas de tamaño mucho mayor que las galgas eléctricas usadas tradicionalmente para medir deformaciones en las pruebas de laboratorio, ocasionando que los resultados obtenidos puedan ser no representativos. En este trabajo fueron diseñados, fabricados y probados sensores de deformación de gran área y forma curvada, usando redes de Bragg en fibra óptica (FBG) con el objetivo de obtener registros representativos en rocas que contienen minerales y estructuras de diversas composiciones, tamaños y direcciones. Se presenta el proceso de elaboración del transductor, su caracterización mecánica, su calibración y su evaluación en pruebas de compresión uniaxial en muestras de roca. Para verificar la eficiencia en la transmisión de la deformación de la roca al sensor una vez pegado, también fue realizado el análisis de la transferencia incluyendo los efectos del adhesivo, de la muestra y del transductor. Los resultados experimentales indican que el sensor desarrollado permite registro y transferencia de la deformación fiables, avance necesario para uso en rocas y otros materiales heterogénos, señalando una interesante perspectiva para aplicaciones sobre superficies irregulares, pues permite aumentar a voluntad el tamaño y forma del área de registro, posibilita también obtener mayor fiabilidad de resultados en muestras de pequeño tamaño y sugiere su conveniencia en obras, en las cuales los sistemas eléctricos tradicionales tienen limitaciones. ABSTRACT Optical fiber sensors are a technology that has matured in recent years, however, further development for rock applications is needed. Rocks contain mineral particles and features larger than electrical strain gauges traditionally used in laboratory tests, causing the results to be unrepresentative. In this work were designed, manufactured, and tested large area and curved shape strain gages, using fiber Bragg gratings in optical fiber (FBG) in order to obtain representative measurement on surface rocks samples containing minerals and structures of different compositions, sizes and directions. This reports presents the processes of manufacturing, mechanical characterization, calibration and evaluation under uniaxial compression tests on rock samples. To verify the efficiency of rock deformation transmitted to attached sensor, it was also performed the analysis of the strain transfer including the effects of the bonding, the sample and the transducer. The experimental results indicate that the developed sensor enables reliable measurements of the strain and its transmission from rock to sensor, appropriate for use in heterogeneous materials, pointing an interesting perspective for applications on irregular surfaces, allowing increasing at will the size and shape of the measurement area. This research suggests suitability of the optical strain gauge for real scale, where traditional electrical systems have demonstrated some limitations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Small scale laboratory experiments, in which the specimen is considered to represent an element of soil in the soil mass, are essential to the evolution of fundamental theories of mechanical behaviour. In this thesis, plane strain and axisymmetric compression tests, performed on a fine sand, are reported and the results are compared with various theoretical predictions. A new apparatus is described in which cuboidal samples can be tested in either axisymmetric compression or plane strain. The plane strain condition is simulated either by rigid side platens, in the conventional manner, or by flexible side platens which also measure the intermediate principal stress. Close control of the initial porosity of the specimens is achieved by a vibratory method of sample preparation. The strength of sand is higher in plane strain than in axisymmetric compression, and the strains required to mobilize peak strength are much smaller. The difference between plane strain and axisymmetric compression behaviour is attributed to the restrictions on particle movement enforced by the plane strain condition; this results in an increase in the frictional component of shear strength. The stress conditions at failure in plane strain, including the intermediate principal stress, are accurately predicted by a theory based on the stress- dilatancy interpretation of Mohr's circles. Detailed observations of rupture modes are presented and measured rupture plane inclinations are predicted by the stress-dilatancy theory. Although good correlation with the stress-dilatancy theory is obtained during virgin loading, in both axisymmetric compression and plane strain, the stress-dilatancy rule is only obeyed during reloading if the specimen has been unloaded to approximate ambient stress conditions. The shape of the stress-strain curves during pre-peak deformation, in both plane strain and axisymmetric compression, is accurately described bv a combined parabolic-hyperbolic specification.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Behavior of granular material subjected to repeated load triaxial compression tests is characterized by a model based on rate process theory. Starting with the Arrhenius equation from chemical kinetics, the relationship of temperature, shear stress, normal stress and volume change to deformation rate is developed. The proposed model equation includes these factors as a product of exponential terms. An empirical relationship between deformation and the cube root of the number of stress applications at constant temperature and normal stress is combined with the rate equation to yield an integrated relationship of temperature, deviator stress, confining pressure and number of deviator stress applications to axial strain. The experimental program consists of 64 repeated load triaxial compression tests, 52 on untreated crushed stone and 12 on the same crushed stone material treated with 4% asphalt cement. Results were analyzed with multiple linear regression techniques and show substantial agreement with the model equations. Experimental results fit the rate equation somewhat better than the integrated equation when all variable quantities are considered. The coefficient of shear temperature gives the activation enthalpy, which is about 4.7 kilocalories/mole for untreated material and 39.4 kilocalories/mole for asphalt-treated material. This indicates the activation enthalpy is about that of the pore fluid. The proportionality coefficient of deviator stress may be used to measure flow unit volume. The volumes thus determined for untreated and asphalt-treated material are not substantially different. This may be coincidental since comparison with flow unit volumes reported by others indicates flow unit volume is related to gradation of untreated material. The flow unit volume of asphalt-treated material may relate to asphalt cement content. The proposed model equations provide a more rational basis for further studies of factors affecting deformation of granular materials under stress similar to that in pavement subjected to transient traffic loads.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

n the field of tissue engineering new polymers are needed to fabricate scaffolds with specific properties depending on the targeted tissue. This work aimed at designing and developing a 3D scaffold with variable mechanical strength, fully interconnected porous network, controllable hydrophilicity and degradability. For this, a desktop-robot-based melt-extrusion rapid prototyping technique was applied to a novel tri-block co-polymer, namely poly(ethylene glycol)-block-poly(epsi-caprolactone)-block-poly(DL-lactide), PEG-PCL-P(DL)LA. This co-polymer was melted by electrical heating and directly extruded out using computer-controlled rapid prototyping by means of compressed purified air to build porous scaffolds. Various lay-down patterns (0/30/60/90/120/150°, 0/45/90/135°, 0/60/120° and 0/90°) were produced by using appropriate positioning of the robotic control system. Scanning electron microscopy and micro-computed tomography were used to show that 3D scaffold architectures were honeycomb-like with completely interconnected and controlled channel characteristics. Compression tests were performed and the data obtained agreed well with the typical behavior of a porous material undergoing deformation. Preliminary cell response to the as-fabricated scaffolds has been studied with primary human fibroblasts. The results demonstrated the suitability of the process and the cell biocompatibility of the polymer, two important properties among the many required for effective clinical use and efficient tissue-engineering scaffolding.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rapid prototyping (RP) techniques have been utilised by tissue engineers to produce three-dimensional (3D) porous scaffolds. RP technologies allow the design and fabrication of complex scaffold geometries with a fully interconnected pore network. Three-dimensional printing (3DP) technique was used to fabricate scaffolds with a novel micro- and macro-architecture. In this study, a unique blend of starch-based polymer powders (cornstarch, dextran and gelatin) was developed for the 3DP process. Cylindrical scaffolds of five different designs were fabricated and post-processed to enhance the mechanical and chemical properties. The scaffold properties were characterised by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), porosity analysis and compression tests

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigated the grain size dependence of mechanical properties and deformation mechanisms of microcrystalline (mc) and nanocrystalline (nc: grain size below 100 nm) Mg-5wt% Al alloys. The Hall-Petch relationship was investigated by both instrumented indentation tests and compression tests. The test results from the indentation tests and compression tests match well with each other. The breakdown of Hall-Petch relationship and the elevated strain rate sensitivity (SRS) of present Mg-5wt% Al alloys when the grain size was reduced below 58nm indicated the more significant role of GB mediated mechanisms in plastic deformation process. However, the relatively smaller SRS values compared to GB sliding and coble creep process suggested the plastic deformation in the current study is still dislocation mediated mechanism dominant.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Magnesium alloys have been of growing interest to various engineering applications, such as the automobile, aerospace, communication and computer industries due to their low density, high specific strength, good machineability and availability as compared with other structural materials. However, most Mg alloys suffer from poor plasticity due to their Hexagonal Close Packed structure. Grain refinement has been proved to be an effective method to enhance the strength and alter the ductility of the materials. Several methods have been proposed to produce materials with nanocrystalline grain structures. So far, most of the research work on nanocrystalline materials has been carried out on Face-Centered Cubic and Body-Centered Cubic metals. However, there has been little investigation of nanocrystalline Mg alloys. In this study, bulk coarse-grained and nanocrystalline Mg alloys were fabricated by a mechanical alloying method. The mixed powder of Mg chips and Al powder was mechanically milled under argon atmosphere for different durations of 0 hours (MA0), 10 hours (MA10), 20 hours (MA20), 30 hours (MA30) and 40 hours (MA40), followed by compaction and sintering. Then the sintered billets were hot-extruded into metallic rods with a 7 mm diameter. The obtained Mg alloys have a nominal composition of Mg–5wt% Al, with grain sizes ranging from 13 μm down to 50 nm, depending on the milling durations. The microstructure characterization and evolution after deformation were carried out by means of Optical microscopy, X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Scanning Probe Microscopy and Neutron Diffraction techniques. Nanoindentaion, compression and micro-compression tests on micro-pillars were used to study the size effects on the mechanical behaviour of the Mg alloys. Two kinds of size effects on the mechanical behaviours and deformation mechanisms were investigated: grain size effect and sample size effect. The nanoindentation tests were composed of constant strain rate, constant loading rate and indentation creep tests. The normally reported indentation size effect in single crystal and coarse-grained crystals was observed in both the coarse-grained and nanocrystalline Mg alloys. Since the indentation size effect is correlated to the Geometrically Necessary Dislocations under the indenter to accommodate the plastic deformation, the good agreement between the experimental results and the Indentation Size Effect model indicated that, in the current nanocrystalline MA20 and MA30, the dislocation plasticity was still the dominant deformation mechanism. Significant hardness enhancement with decreasing grain size, down to 58 nm, was found in the nanocrystalline Mg alloys. Further reduction of grain size would lead to a drop in the hardness values. The failure of grain refinement strengthening with the relatively high strain rate sensitivity of nanocrystalline Mg alloys suggested a change in the deformation mechanism. Indentation creep tests showed that the stress exponent was dependent on the loading rate during the loading section of the indentation, which was related to the dislocation structures before the creep starts. The influence of grain size on the mechanical behaviour and strength of extruded coarse-grained and nanocrystalline Mg alloys were investigated using uniaxial compression tests. The macroscopic response of the Mg alloys transited from strain hardening to strain softening behaviour, with grain size reduced from 13 ìm to 50 nm. The strain hardening was related to the twinning induced hardening and dislocation hardening effect, while the strain softening was attributed to the localized deformation in the nanocrystalline grains. The tension–compression yield asymmetry was noticed in the nanocrystalline region, demonstrating the twinning effect in the ultra-fine-grained and nanocrystalline region. The relationship k tensions < k compression failed in the nanocrystalline Mg alloys; this was attributed to the twofold effect of grain size on twinning. The nanocrystalline Mg alloys were found to exhibit increased strain rate sensitivity with decreasing grain size, with strain rate ranging from 0.0001/s to 0.01/s. Strain rate sensitivity of coarse-grained MA0 was increased by more than 10 times in MA40. The Hall-Petch relationship broke down at a critical grain size in the nanocrystalline region. The breakdown of the Hall-Petch relationship and the increased strain rate sensitivity were due to the localized dislocation activities (generalization and annihilation at grain boundaries) and the more significant contribution from grain boundary mediated mechanisms. In the micro-compression tests, the sample size effects on the mechanical behaviours were studied on MA0, MA20 and MA40 micro-pillars. In contrast to the bulk samples under compression, the stress-strain curves of MA0 and MA20 micro-pillars were characterized with a number of discrete strain burst events separated by nearly elastic strain segments. Unlike MA0 and MA20, the stress-strain curves of MA40 micro-pillars were smooth, without obvious strain bursts. The deformation mechanisms of the MA0 and MA20 micro-pillars under micro-compression tests were considered to be initially dominated by deformation twinning, followed by dislocation mechanisms. For MA40 pillars, the deformation mechanisms were believed to be localized dislocation activities and grain boundary related mechanisms. The strain hardening behaviours of the micro-pillars suggested that the grain boundaries in the nanocrystalline micro-pillars would reduce the source (nucleation sources for twins/dislocations) starvation hardening effect. The power law relationship of the yield strength on pillar dimensions in MA0, MA20 supported the fact that the twinning mechanism was correlated to the pre-existing defects, which can promote the nucleation of the twins. Then, we provided a latitudinal comparison of the results and conclusions derived from the different techniques used for testing the coarse-grained and nanocrystalline Mg alloy; this helps to better understand the deformation mechanisms of the Mg alloys as a whole. At the end, we summarized the thesis and highlighted the conclusions, contributions, innovations and outcomes of the research. Finally, it outlined recommendations for future work.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Magnesium alloys are attracting increasing research interests due to their low density, high specific strength, good machinability and availability as compared to other structural materials. However, the deformation and failure mechanisms of nanocrystalline (nc) Mg alloys have not been well understood. In this work, the deformation behaviour of nc Mg-5Al alloys was investigated using compression test, with focus on the effects of grain size. The average grain size of the Mg- Al alloy was changed from 13 to 50 nm via mechanical milling. The results showed that grain size had a significant influence on the yield stress and ductility of the Mg alloys, and the materials exhibited increased strain rate sensitivity with a decrease in grain size. The deformation mechanisms were also strongly dependent on the grain sizes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis is aimed at further understanding the uppermost lipid-filled membranous layer (i.e. surface amorphous layer (SAL)) of articular cartilage and to develop a scientific framework for re-introducing lipids onto the surface of lipid-depleted articular cartilage (i.e. "resurfacing"). The outcome will potentially contribute to knowledge that will facilitate the repair of the articular surface of cartilage where degradation is limited to the loss of the lipids of the SAL only. The surface amorphous layer is of utmost importance to the effective load-spreading, lubrication, and semipermeability (which controls its fluid management, nutrient transport and waste removal) of articular cartilage in the mammalian joints. However, because this uppermost layer of cartilage is often in contact during physiological function, it is prone to wear and tear, and thus, is the site for damage initiation that can lead to the early stages of joint condition like osteoarthritis, and related conditions that cause pain and discomfort leading to low quality of life in patients. It is therefore imperative to conduct a study which offers insight into remedying this problem. It is hypothesized that restoration (resurfacing) of the surface amorphous layer can be achieved by re-introducing synthetic surface-active phospholipids (SAPL) into the joint space. This hypothesis was tested in this thesis by exposing cartilage samples whose surface lipids had been depleted to individual and mixtures of synthetic saturated and unsaturated phospholipids. The surfaces of normal, delipidized, and relipidized samples of cartilage were characterized for their structural integrity and functionality using atomic force microscope (AFM), confocal microscope (COFM), Raman spectroscopy, magnetic resonance imaging (MRI) with image processing in the MATLAB® environment and mechanical loading experiments. The results from AFM imaging, confocal microscopy, and Raman spectroscopy revealed a successful deposition of new surface layer on delipidized cartilage when incubated in synthetic phospholipids. The relipidization resulted in a significant improvement in the surface nanostructure of the artificially degraded cartilage, with the complete SAPL mixture providing better outcomes in comparison to those created with the single SAPL components (palmitoyl-oleoyl-phosphatidylcholine, POPC and dipalmitoyl-phosphatidylcholine, DPPC). MRI analysis revealed that the surface created with the complete mixture of synthetic lipids was capable of providing semipermeability to the surface layer of the treated cartilage samples relative to the normal intact surface. Furthermore, deformation energy analysis revealed that the treated samples were capable of delivering the elastic properties required for load bearing and recovery of the tissue relative to the normal intact samples, with this capability closer between the normal and the samples incubated in the complete lipid mixture. In conclusion, this thesis has established that it is possible to deposit/create a potentially viable layer on the surface of cartilage following degradation/lipid loss through incubation in synthetic lipid solutions. However, further studies will be required to advance the ideas developed in this thesis, for the development of synthetic lipid-based injections/drugs for treatment of osteoarthritis and other related joint conditions.