962 resultados para competing risks model
Resumo:
In this article, we propose a new Bayesian flexible cure rate survival model, which generalises the stochastic model of Klebanov et al. [Klebanov LB, Rachev ST and Yakovlev AY. A stochastic-model of radiation carcinogenesis - latent time distributions and their properties. Math Biosci 1993; 113: 51-75], and has much in common with the destructive model formulated by Rodrigues et al. [Rodrigues J, de Castro M, Balakrishnan N and Cancho VG. Destructive weighted Poisson cure rate models. Technical Report, Universidade Federal de Sao Carlos, Sao Carlos-SP. Brazil, 2009 (accepted in Lifetime Data Analysis)]. In our approach, the accumulated number of lesions or altered cells follows a compound weighted Poisson distribution. This model is more flexible than the promotion time cure model in terms of dispersion. Moreover, it possesses an interesting and realistic interpretation of the biological mechanism of the occurrence of the event of interest as it includes a destructive process of tumour cells after an initial treatment or the capacity of an individual exposed to irradiation to repair altered cells that results in cancer induction. In other words, what is recorded is only the damaged portion of the original number of altered cells not eliminated by the treatment or repaired by the repair system of an individual. Markov Chain Monte Carlo (MCMC) methods are then used to develop Bayesian inference for the proposed model. Also, some discussions on the model selection and an illustration with a cutaneous melanoma data set analysed by Rodrigues et al. [Rodrigues J, de Castro M, Balakrishnan N and Cancho VG. Destructive weighted Poisson cure rate models. Technical Report, Universidade Federal de Sao Carlos, Sao Carlos-SP. Brazil, 2009 (accepted in Lifetime Data Analysis)] are presented.
Resumo:
Background and aim of the study: Results of valve re-replacement (reoperation) in 898 patients undergoing aortic valve replacement with cryopreserved homograft valves between 1975 and 1998 are reported. The study aim was to provide estimates of unconditional probability of valve reoperation and cumulative incidence function (actual risk) of reoperation. Methods: Valves were implanted by subcoronary insertion (n = 500), inclusion cylinder (n = 46), and aortic root replacement (n = 352). Probability of reoperation was estimated by adopting a mixture model framework within which estimates were adjusted for two risk factors: patient age at initial replacement, and implantation technique. Results: For a patient aged 50 years, the probability of reoperation in his/her lifetime was estimated as 44% and 56% for non-root and root replacement techniques, respectively. For a patient aged 70 years, estimated probability of reoperation was 16% and 25%, respectively. Given that a reoperation is required, patients with non-root replacement have a higher hazard rate than those with root replacement (hazards ratio = 1.4), indicating that non-root replacement patients tend to undergo reoperation earlier before death than root replacement patients. Conclusion: Younger patient age and root versus non-root replacement are risk factors for reoperation. Valve durability is much less in younger patients, while root replacement patients appear more likely to live longer and hence are more likely to require reoperation.
Resumo:
Biologic valve re-replacement was examined in a series of 1343 patients who underwent aortic valve replacement at The Prince Charles Hospital, Brisbane, with a cryopreserved or 4 degrees C stored allograft valve or a xenograft valve, A parametric model approach was used to simultaneously model the competing risks of death without re-replacement and re-replacement before death, One hundred eleven patients underwent a first re-replacement for a variety of reasons (69 patients with xenograft valves, 28 patients with 4 degrees C stored allograft valves, and 14 patients with cryopreserved allograft valves), By multivariable analysis younger age at operation was associated with xenograft, 4 degrees C stored allograft, and cryopreserved allograft valve re-replacement, However, this effect was examined in the context of longer survival of younger patients, which increases their exposure to the risk of re-replacement as compared with that in older patients whose decreased survival reduced their probability of requiring valve re-replacement, In patients older than 60 years at the time of aortic valve replacement, the probability of re-replacement (for any reason) before death was similar for xenografts and cryopreserved allograft valves but higher for 4 degrees C stored valves, However, in patients younger than 60 years, the probability of re-replacement at any time during the remainder of the life of the patient was lower with the cryopreserved allograft valve compared with the xenograft valve and 4 degrees C stored allografts.
Resumo:
This paper studies the duration pattern of xed-term contracts and the determinantsof their conversion into permanent ones in Spain, where the share of xed-termemployment is the highest in Europe. We estimate a duration model for temporaryemployment, with competing risks of terminating into permanent employment versusalternative states, and exible duration dependence. We nd that conversion rates aregenerally below 10%. Our estimated conversion rates roughly increase with tenure,with a pronounced spike at the legal limit, when there is no legal way to retain theworker on a temporary contract. We argue that estimated di¤erences in conversionrates across categories of workers can stem from di¤erences in worker outside optionsand thus the power to credibly threat to quit temporary jobs.
Évaluation de l'impact clinique et économique du développement d'un traitement pour la schizophrénie
Resumo:
Contexte : Les stratégies pharmacologiques pour traiter la schizophrénie reçoivent une attention croissante due au développement de nouvelles pharmacothérapies plus efficaces, mieux tolérées mais plus coûteuses. La schizophrénie est une maladie chronique présentant différents états spécifiques et définis par leur sévérité. Objectifs : Ce programme de recherche vise à: 1) Évaluer les facteurs associés au risque d'être dans un état spécifique de la schizophrénie, afin de construire les fonctions de risque de la modélisation du cours naturel de la schizophrénie; 2) Développer et valider un modèle de Markov avec microsimulations de Monte-Carlo, afin de simuler l'évolution naturelle des patients qui sont nouvellement diagnostiqués pour la schizophrénie, en fonction du profil individuel des facteurs de risque; 3) Estimer le coût direct de la schizophrénie (pour les soins de santé et autres non reliés aux soins de santé) dans la perspective gouvernementale et simuler l’impact clinique et économique du développement d’un traitement dans une cohorte de patients nouvellement diagnostiqués avec la schizophrénie, suivis pendant les cinq premières années post-diagnostic. Méthode : Pour le premier objectif de ce programme de recherche, un total de 14 320 patients nouvellement diagnostiqués avec la schizophrénie ont été identifiés dans les bases de données de la RAMQ et de Med-Echo. Les six états spécifiques de la schizophrénie ont été définis : le premier épisode (FE), l'état de dépendance faible (LDS), l’état de dépendance élevée (HDS), l’état stable (Stable), l’état de bien-être (Well) et l'état de décès (Death). Pour évaluer les facteurs associés au risque de se trouver dans chacun des états spécifiques de la schizophrénie, nous avons construit 4 fonctions de risque en se basant sur l'analyse de risque proportionnel de Cox pour des risques compétitifs. Pour le deuxième objectif, nous avons élaboré et validé un modèle de Markov avec microsimulations de Monte-Carlo intégrant les six états spécifiques de la schizophrénie. Dans le modèle, chaque sujet avait ses propres probabilités de transition entre les états spécifiques de la schizophrénie. Ces probabilités ont été estimées en utilisant la méthode de la fonction d'incidence cumulée. Pour le troisième objectif, nous avons utilisé le modèle de Markov développé précédemment. Ce modèle inclut les coûts directs de soins de santé, estimés en utilisant les bases de données de la Régie de l'assurance maladie du Québec et Med-Echo, et les coûts directs autres que pour les soins de santé, estimés à partir des enquêtes et publications de Statistique Canada. Résultats : Un total de 14 320 personnes nouvellement diagnostiquées avec la schizophrénie ont été identifiées dans la cohorte à l'étude. Le suivi moyen des sujets était de 4,4 (± 2,6) ans. Parmi les facteurs associés à l’évolution de la schizophrénie, on peut énumérer l’âge, le sexe, le traitement pour la schizophrénie et les comorbidités. Après une période de cinq ans, nos résultats montrent que 41% des patients seront considérés guéris, 13% seront dans un état stable et 3,4% seront décédés. Au cours des 5 premières années après le diagnostic de schizophrénie, le coût direct moyen de soins de santé et autres que les soins de santé a été estimé à 36 701 $ canadiens (CAN) (95% CI: 36 264-37 138). Le coût des soins de santé a représenté 56,2% du coût direct, le coût de l'aide sociale 34,6% et le coût associé à l’institutionnalisation dans les établissements de soins de longue durée 9,2%. Si un nouveau traitement était disponible et offrait une augmentation de 20% de l'efficacité thérapeutique, le coût direct des soins de santé et autres que les soins de santé pourrait être réduit jusqu’à 14,2%. Conclusion : Nous avons identifié des facteurs associés à l’évolution de la schizophrénie. Le modèle de Markov que nous avons développé est le premier modèle canadien intégrant des probabilités de transition ajustées pour le profil individuel des facteurs de risque, en utilisant des données réelles. Le modèle montre une bonne validité interne et externe. Nos résultats indiquent qu’un nouveau traitement pourrait éventuellement réduire les hospitalisations et le coût associé aux établissements de soins de longue durée, augmenter les chances des patients de retourner sur le marché du travail et ainsi contribuer à la réduction du coût de l'aide sociale.
Resumo:
Multivariate lifetime data arise in various forms including recurrent event data when individuals are followed to observe the sequence of occurrences of a certain type of event; correlated lifetime when an individual is followed for the occurrence of two or more types of events, or when distinct individuals have dependent event times. In most studies there are covariates such as treatments, group indicators, individual characteristics, or environmental conditions, whose relationship to lifetime is of interest. This leads to a consideration of regression models.The well known Cox proportional hazards model and its variations, using the marginal hazard functions employed for the analysis of multivariate survival data in literature are not sufficient to explain the complete dependence structure of pair of lifetimes on the covariate vector. Motivated by this, in Chapter 2, we introduced a bivariate proportional hazards model using vector hazard function of Johnson and Kotz (1975), in which the covariates under study have different effect on two components of the vector hazard function. The proposed model is useful in real life situations to study the dependence structure of pair of lifetimes on the covariate vector . The well known partial likelihood approach is used for the estimation of parameter vectors. We then introduced a bivariate proportional hazards model for gap times of recurrent events in Chapter 3. The model incorporates both marginal and joint dependence of the distribution of gap times on the covariate vector . In many fields of application, mean residual life function is considered superior concept than the hazard function. Motivated by this, in Chapter 4, we considered a new semi-parametric model, bivariate proportional mean residual life time model, to assess the relationship between mean residual life and covariates for gap time of recurrent events. The counting process approach is used for the inference procedures of the gap time of recurrent events. In many survival studies, the distribution of lifetime may depend on the distribution of censoring time. In Chapter 5, we introduced a proportional hazards model for duration times and developed inference procedures under dependent (informative) censoring. In Chapter 6, we introduced a bivariate proportional hazards model for competing risks data under right censoring. The asymptotic properties of the estimators of the parameters of different models developed in previous chapters, were studied. The proposed models were applied to various real life situations.
Resumo:
This thesis Entitled “modelling and analysis of recurrent event data with multiple causes.Survival data is a term used for describing data that measures the time to occurrence of an event.In survival studies, the time to occurrence of an event is generally referred to as lifetime.Recurrent event data are commonly encountered in longitudinal studies when individuals are followed to observe the repeated occurrences of certain events. In many practical situations, individuals under study are exposed to the failure due to more than one causes and the eventual failure can be attributed to exactly one of these causes.The proposed model was useful in real life situations to study the effect of covariates on recurrences of certain events due to different causes.In Chapter 3, an additive hazards model for gap time distributions of recurrent event data with multiple causes was introduced. The parameter estimation and asymptotic properties were discussed .In Chapter 4, a shared frailty model for the analysis of bivariate competing risks data was presented and the estimation procedures for shared gamma frailty model, without covariates and with covariates, using EM algorithm were discussed. In Chapter 6, two nonparametric estimators for bivariate survivor function of paired recurrent event data were developed. The asymptotic properties of the estimators were studied. The proposed estimators were applied to a real life data set. Simulation studies were carried out to find the efficiency of the proposed estimators.
Resumo:
In this paper, we develop a flexible cure rate survival model by assuming the number of competing causes of the event of interest to follow a compound weighted Poisson distribution. This model is more flexible in terms of dispersion than the promotion time cure model. Moreover, it gives an interesting and realistic interpretation of the biological mechanism of the occurrence of event of interest as it includes a destructive process of the initial risk factors in a competitive scenario. In other words, what is recorded is only from the undamaged portion of the original number of risk factors.
Resumo:
In this paper, we develop a flexible cure rate survival model by assuming the number of competing causes of the event of interest to follow the Conway-Maxwell Poisson distribution. This model includes as special cases some of the well-known cure rate models discussed in the literature. Next, we discuss the maximum likelihood estimation of the parameters of this cure rate survival model. Finally, we illustrate the usefulness of this model by applying it to a real cutaneous melanoma data. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this work, we study the survival cure rate model proposed by Yakovlev et al. (1993), based on a competing risks structure concurring to cause the event of interest, and the approach proposed by Chen et al. (1999), where covariates are introduced to model the risk amount. We focus the measurement error covariates topics, considering the use of corrected score method in order to obtain consistent estimators. A simulation study is done to evaluate the behavior of the estimators obtained by this method for finite samples. The simulation aims to identify not only the impact on the regression coefficients of the covariates measured with error (Mizoi et al. 2007) but also on the coefficients of covariates measured without error. We also verify the adequacy of the piecewise exponential distribution to the cure rate model with measurement error. At the end, model applications involving real data are made
Resumo:
This thesis contains four different studies on the dynamics of gender in households and workplaces. The relationship between family life and work life is in focus, particularly in the paper on labour market outcomes after divorce. In the introductory chapter, the Swedish context is briefly described. The description focuses on gender differences in the labour market and in the home. Theories concerning the division of work in the household are discussed, as are two theories on labour market discrimination, viz. taste discrimination and statistical discrimination. The theory part is concluded with a discussion of social closure processes and gendered organizational structures. The Reproduction of Gender. Housework and Attitudes Towards Gender Equality in the Home Among Swedish Boys and Girls. The housework boys and girls age 10 to 18 do, and their attitudes towards gender equality in the home are studied. One aim is to see whether the work children do is gendered and if so, whether they follow their parents’, often gendered, pattern in housework. A second aim is to see whether parents’ division of work is related to the children’s attitude towards gender equality in the home. The data used are taken from the Swedish Child Level of Living Survey (Child-LNU) 2000. Results indicate that girls and boys in two-parent families are more prone to engage in gender-atypical work the more their parent of the same sex engages in this kind of work. The fact that girls still do more housework than boys indicates that housework is gendered work also among children. No relation between parents’ division of work and the child’s attitude towards gender equality in the home was found. Dependence within Families and the Household Division of Labor – A Comparison between Sweden and the United States. This paper assesses the relative explanatory value of the resource-bargaining perspective and the doing-gender approach in analysing the division of housework in the United States and Sweden from the mid-1970s to 2000. Data from the Swedish Level of Living Survey (LNU) and the Panel Study of Income Dynamics (PSID) were used. Overall results indicate that housework is truly gendered work in both countries during the entire period. Even so, the results also indicate that gender deviance neutralization is more pronounced in the United States than in Sweden. Unlike Swedish women, American women seem to increase their time spent in housework when their husbands are to some extent economically dependent on them, as if to neutralize the presumed gender deviance. Divorce and Labour Market Outcomes. Do Women Suffer or Gain? In this paper, the interconnected nature of work and family is studied by looking at labour market outcomes after divorce. The data used are retrospective work and family histories collected in LNU 1991. A hazard regression model with competing risks reveals that women’s chances of improving their occupational prestige appear to be better after divorce compared to before. Increased working hours and perhaps also increased energy invested in the job may pay off in better occupational opportunities. Worth noting, however, is that the outcome among women with a less firm labour market attachment is more often to a job of lower prestige than one of higher prestige. Hence, the labour market outcome for women after divorce is to some extent conditioned by their labour market attachment at the time of divorce. Men, on the other hand, in most cases seem to suffer occupationally from divorce. For separated men the risk of negative changes in occupational prestige is greater than for cohabiting men. Formal On-the-job Training. A Gender-Typed Experience and Wage- Related Advantage? Formal on-the-job training (FOJT) can have a positive impact on wages and on promotion opportunities. According to theory and earlier research, a two-step model of gender inequality in FOJT is predicted: First, women are less likely than men to take part in FOJT and, second, once women do get the more remunerative training, they are not rewarded for their new skills to the same extent as men are. Pooled cross-sectional data from the Swedish Survey of Living Conditions (ULF) in the mid-nineties were used. Results show that women are significantly less likely than men to take part in FOJT. Among those who do receive training, women are more likely to take part in industry-specific training, whereas men are more likely to participate in general training and training that increases promotion opportunities. The two latter forms of training significantly raise a man’s annual earnings but not a woman’s. Hence, the theoretical model is supported and it is argued that this gender inequality is partly due to employers’ discriminatory practices.
Resumo:
Mendelian models can predict who carries an inherited deleterious mutation of known disease genes based on family history. For example, the BRCAPRO model is commonly used to identify families who carry mutations of BRCA1 and BRCA2, based on familial breast and ovarian cancers. These models incorporate the age of diagnosis of diseases in relatives and current age or age of death. We develop a rigorous foundation for handling multiple diseases with censoring. We prove that any disease unrelated to mutations can be excluded from the model, unless it is sufficiently common and dependent on a mutation-related disease time. Furthermore, if a family member has a disease with higher probability density among mutation carriers, but the model does not account for it, then the carrier probability is deflated. However, even if a family only has diseases the model accounts for, if the model excludes a mutation-related disease, then the carrier probability will be inflated. In light of these results, we extend BRCAPRO to account for surviving all non-breast/ovary cancers as a single outcome. The extension also enables BRCAPRO to extract more useful information from male relatives. Using 1500 familes from the Cancer Genetics Network, accounting for surviving other cancers improves BRCAPRO’s concordance index from 0.758 to 0.762 (p = 0.046), improves its positive predictive value from 35% to 39% (p < 10−6) without impacting its negative predictive value, and improves its overall calibration, although calibration slightly worsens for those with carrier probability < 10%. Copyright c 2000 John Wiley & Sons, Ltd.
Resumo:
A number of authors have studies the mixture survival model to analyze survival data with nonnegligible cure fractions. A key assumption made by these authors is the independence between the survival time and the censoring time. To our knowledge, no one has studies the mixture cure model in the presence of dependent censoring. To account for such dependence, we propose a more general cure model which allows for dependent censoring. In particular, we derive the cure models from the perspective of competing risks and model the dependence between the censoring time and the survival time using a class of Archimedean copula models. Within this framework, we consider the parameter estimation, the cure detection, and the two-sample comparison of latency distribution in the presence of dependent censoring when a proportion of patients is deemed cured. Large sample results using the martingale theory are obtained. We applied the proposed methodologies to the SEER prostate cancer data.
Resumo:
The relationship between serum cholesterol and cancer incidence was investigated in the population of the Hypertension Detection and Follow-up Program (HDFP). The HDFP was a multi-center trial designed to test the effectiveness of a stepped program of medication in reducing mortality associated with hypertension. Over 10,000 participants, ages 30-69, were followed with clinic and home visits for a minimum of five years. Cancer incidence was ascertained from existing study documents, which included hospitalization records, autopsy reports and death certificates. During the five years of follow-up, 286 new cancer cases were documented. The distribution of sites and total number of cases were similar to those predicted using rates from the Third National Cancer Survey. A non-fasting baseline serum cholesterol level was available for most participants. Age, sex, and race specific five-year cancer incidence rates were computed for each cholesterol quartile. Rates were also computed by smoking status, education status, and percent ideal weight quartiles. In addition, these and other factors were investigated with the use of the multiple logistic model.^ For all cancers combined, a significant inverse relationship existed between baseline serum cholesterol levels and cancer incidence. Previously documented associations between smoking, education and cancer were also demonstrated but did not account for the relationship between serum cholesterol and cancer. The relationship was more evident in males than females but this was felt to represent the different distribution of occurrence of specific cancer sites in the two sexes. The inverse relationship existed for all specific sites investigated (except breast) although a level of statistical significance was reached only for prostate carcinoma. Analyses after exclusion of cases diagnosed during the first two years of follow-up still yielded an inverse relationship. Life table analysis indicated that competing risks during the period of follow-up did not account for the existence of an inverse relationship. It is concluded that a weak inverse relationship does exist between serum cholesterol for many but not all cancer sites. This relationship is not due to confounding by other known cancer risk factors, competing risks or persons entering the study with undiagnosed cancer. Not enough information is available at the present time to determine whether this relationship is causal and further research is suggested. ^
Resumo:
The study of Information Technology (IT) outsourcing is relevant because companies are outsourcing their activities more than ever. An important IT outsourcing research area is the decision-making process. In other words, the comprehension of how companies decide about outsourcing their IT operations is relevant from research point of view. Therefore, the objective of this study is to understand the decision-making process used by Brazilian companies when outsourcing their IT operations. An analysis of the literature that refers to this subject showed that six aspects are usually considered by companies on the evaluation of IT outsourcing service alternatives. This research verified how these six aspects are considered by Brazilian companies on IT outsourcing decisions. The survey showed that Brazilian companies consider all the six aspects, but each of them has a different level of importance. The research also grouped the aspects according to their level of importance and interdependency, using factorial analysis to understand the logic behind IT outsourcing decision process. (C) 2009 Elsevier B.V. All rights reserved.