964 resultados para color image reduction
Resumo:
Power dissipation and tolerance to process variations pose conflicting design requirements. Scaling of voltage is associated with larger variations, while Vdd upscaling or transistor up-sizing for process tolerance can be detrimental for power dissipation. However, for certain signal processing systems such as those used in color image processing, we noted that effective trade-offs can be achieved between Vdd scaling, process tolerance and "output quality". In this paper we demonstrate how these tradeoffs can be effectively utilized in the development of novel low-power variation tolerant architectures for color interpolation. The proposed architecture supports a graceful degradation in the PSNR (Peak Signal to Noise Ratio) under aggressive voltage scaling as well as extreme process variations in. sub-70nm technologies. This is achieved by exploiting the fact that some computations are more important and contribute more to the PSNR improvement compared to the others. The computations are mapped to the hardware in such a way that only the less important computations are affected by Vdd-scaling and process variations. Simulation results show that even at a scaled voltage of 60% of nominal Vdd value, our design provides reasonable image PSNR with 69% power savings.
Resumo:
In this paper is a totally automatic strategy proposed to reduce the complexity of patterns ( vegetation, building, soils etc.) that interact with the object 'road' in color images, thus reducing the difficulty of the automatic extraction of this object. The proposed methodology consists of three sequential steps. In the first step the punctual operator is applied for artificiality index computation known as NandA ( Natural and Artificial). The result is an image whose the intensity attribute is the NandA response. The second step consists in automatically thresholding the image obtained in the previous step, resulting in a binary image. This image usually allows the separation between artificial and natural objects. The third step consists in applying a preexisting road seed extraction methodology to the previous generated binary image. Several experiments carried out with real images made the verification of the potential of the proposed methodology possible. The comparison of the obtained result to others obtained by a similar methodology for road seed extraction from gray level images, showed that the main benefit was the drastic reduction of the computational effort.
Resumo:
This layer is a digitized geo-referenced raster image of a 1798 map of Maine drawn by D.F. Sotzmann. These Sotzmann maps (10 maps of New England and Mid-Atlantic states) typically portray both natural and manmade features. They are highly detailed with symbols for churches, roads, court houses, distilleries, iron works, mills, academies, county lines, town lines, and more. Relief is usually indicated by hachures and country boundaries have also been drawn. Place names are shown in both German and English and each map usually includes an index to land grants. Prime meridians used for this series are Greenwich and Washington, D.C.
Resumo:
This layer is a digitized geo-referenced raster image of a 1796 map of New Hampshire drawn by D.F. Sotzmann. These Sotzmann maps (10 maps of New England and Mid-Atlantic states) typically portray both natural and manmade features. They are highly detailed with symbols for churches, roads, court houses, distilleries, iron works, mills, academies, county lines, town lines, and more. Relief is usually indicated by hachures and country boundaries have also been drawn. Place names are shown in both German and English and each map usually includes an index to land grants. Prime meridians used for this series are Greenwich and Washington, D.C.
Resumo:
This layer is a digitized geo-referenced raster image of a 1796 map of Vermont drawn by D.F. Sotzmann. These Sotzmann maps (10 maps of New England and Mid-Atlantic states) typically portray both natural and manmade features. They are highly detailed with symbols for churches, roads, court houses, distilleries, iron works, mills, academies, county lines, town lines, and more. Relief is usually indicated by hachures and country boundaries have also been drawn. Place names are shown in both German and English and each map usually includes an index to land grants. Prime meridians used for this series are Greenwich and Washington, D.C.
Resumo:
This layer is a digitized geo-referenced raster image of a 1797 map of Massachusetts drawn by D.F. Sotzmann. These Sotzmann maps (10 maps of New England and Mid-Atlantic states) typically portray both natural and manmade features. They are highly detailed with symbols for churches, roads, court houses, distilleries, iron works, mills, academies, county lines, town lines, and more. Relief is usually indicated by hachures and country boundaries have also been drawn. Place names are shown in both German and English and each map usually includes an index to land grants. Prime meridians used for this series are Greenwich and Washington, D.C.
Resumo:
This layer is a digitized geo-referenced raster image of a 1797 map of Rhode Island drawn by D.F. Sotzmann. These Sotzmann maps (10 maps of New England and Mid-Atlantic states) typically portray both natural and manmade features. They are highly detailed with symbols for churches, roads, court houses, distilleries, iron works, mills, academies, county lines, town lines, and more. Relief is usually indicated by hachures and country boundaries have also been drawn. Place names are shown in both German and English and each map usually includes an index to land grants. Prime meridians used for this series are Greenwich and Washington, D.C.
Resumo:
This layer is a digitized geo-referenced raster image of a 1796 map of Connecticut drawn by D.F. Sotzmann. These Sotzmann maps (10 maps of New England and Mid-Atlantic states) typically portray both natural and manmade features. They are highly detailed with symbols for churches, roads, court houses, distilleries, iron works, mills, academies, county lines, town lines, and more. Relief is usually indicated by hachures and country boundaries have also been drawn. Place names are shown in both German and English and each map usually includes an index to land grants. Prime meridians used for this series are Greenwich and Washington, D.C.
Resumo:
This layer is a digitized geo-referenced raster image of a 1799 map of New York drawn by D.F. Sotzmann. These Sotzmann maps (10 maps of New England and Mid-Atlantic states) typically portray both natural and manmade features. They are highly detailed with symbols for churches, roads, court houses, distilleries, iron works, mills, academies, county lines, town lines, and more. Relief is usually indicated by hachures and country boundaries have also been drawn. Place names are shown in both German and English and each map usually includes an index to land grants. Prime meridians used for this series are Greenwich and Washington, D.C.
Resumo:
This layer is a digitized geo-referenced raster image of a 1797 map of Pennsylvania drawn by D.F. Sotzmann. These Sotzmann maps (10 maps of New England and Mid-Atlantic states) typically portray both natural and manmade features. They are highly detailed with symbols for churches, roads, court houses, distilleries, iron works, mills, academies, county lines, town lines, and more. Relief is usually indicated by hachures and country boundaries have also been drawn. Place names are shown in both German and English and each map usually includes an index to land grants. Prime meridians used for this series are Greenwich and Washington, D.C.
Resumo:
This layer is a digitized geo-referenced raster image of a 1797 map of Maryland and Delaware drawn by D.F. Sotzmann. These Sotzmann maps (10 maps of New England and Mid-Atlantic states) typically portray both natural and manmade features. They are highly detailed with symbols for churches, roads, court houses, distilleries, iron works, mills, academies, county lines, town lines, and more. Relief is usually indicated by hachures and country boundaries have also been drawn. Place names are shown in both German and English and each map usually includes an index to land grants. Prime meridians used for this series are Greenwich and Washington, D.C.
Resumo:
This layer is a digitized geo-referenced raster image of a 1797 map of New Jersey drawn by D.F. Sotzmann. These Sotzmann maps (10 maps of New England and Mid-Atlantic states) typically portray both natural and manmade features. They are highly detailed with symbols for churches, roads, court houses, distilleries, iron works, mills, academies, county lines, town lines, and more. Relief is usually indicated by hachures and country boundaries have also been drawn. Place names are shown in both German and English and each map usually includes an index to land grants. Prime meridians used for this series are Greenwich and Washington, D.C.