955 resultados para citric acid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phytoextraction, the use of plants to extract heavy metals from contaminated soils, could be an interesting alternative to conventional remediation technologies. However, calcareous soils with relatively high total metal contents are difficult to phytoremediate due to low soluble metal concentrations. Soil amendments such as ethylene diaminetetraacetate (EDTA) have been suggested to increase heavy metal bioavailability and uptake in aboveground plant parts. Strong persistence of EDTA and risks of leaching of potentially toxic metals and essential nutrients have led to research on easily biodegradable soilamendments such as citric acid. In our research, EDTA is regarded as a scientific benchmark with which degradable alternatives are compared for enhanced phytoextraction purposes. The effects of increasing doses of EDTA (0.1, 1, 10 mmol kg(-1) dry soil) and citric acid (0.01, 0.05,0.25,0.442, 0.5 mol kg(-1) dry soil) on bioavailable fractions of Cu, Zn, Cd, and Pb were assessed in one part of our study and results are presented in this article. The evolution of labile soil fractions of heavy metals over time was evaluated using water paste saturation extraction (similar to soluble fraction), extraction with 1 M NH4OAc at pH 7 (similar to exchangeable fraction), and extraction with 0.5 M NH4OAc + 0.5 M HOAc + 0.02 M EDTA atpH 4.65 (similar to potentially bioavailable fraction). Both citric acid and EDTA produced a rapid initial increase in labile heavy metal fractions. Metal mobilization remained constant in time for soils treated with EDTA, but metal fractions was noted for soils treated with citric acid. The half life of heavy metal mobilization by citric acid varied between 1.5 and 5.7 d. In the following article, the effect of heavy metal mobilization on uptake by Helianthus annutis will be presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acrylamide levels in cooked/processed food can be reduced by treatment with citric acid or glycine. In a potato model system cooked at 180 degrees C for 10-60 min, these treatments affected the volatile profiles. Strecker aldehydes and alkylpyrazines, key flavor compounds of cooked potato, were monitored. Citric acid limited the generation of volatiles, particularly the alkylpyrazines. Glycine increased the total volatile yield by promoting the formation of certain alkylpyrazines, namely, 2,3-dimethylpyrazine, trimethylpyrazine, 2-ethyl-3,5-dimethylpyrazine, tetramethylpyrazine, and 2,5-diethyl-3- methylpyrazine. However, the formation of other pyrazines and Strecker aldehydes was suppressed. It was proposed that the opposing effects of these treatments on total volatile yield may be used to best advantage by employing a combined treatment at lower concentrations, especially as both treatments were found to have an additive effect in reducing acrylamide. This would minimize the impact on flavor but still achieve the desired reduction in acrylamide levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crassulacean acid metabolism (CAM) confers crucial adaptations for plants living under frequent environmental stresses. A wide metabolic plasticity can be found among CAM species regarding the type of storage carbohydrate, organic acid accumulated at night and decarboxylating system. Consequently, many aspects of the CAM pathway control are still elusive while the impact of this photosynthetic adaptation on nitrogen metabolism has remained largely unexplored. In this study, we investigated a possible link between the CAM cycle and the nitrogen assimilation in the atmospheric bromeliad Tillandsia pohliana by simultaneously characterizing the diel changes in key enzyme activities and metabolite levels of both organic acid and nitrate metabolisms. The results revealed that T. pohliana performed a typical CAM cycle in which phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase phosphorylation seemed to play a crucial role to avoid futile cycles of carboxylation and decarboxylation. Unlike all other bromeliads previously investigated, almost equimolar concentrations of malate and citrate were accumulated at night. Moreover, a marked nocturnal depletion in the starch reservoirs and an atypical pattern of nitrate reduction restricted to the nighttime were also observed. Since reduction and assimilation of nitrate requires a massive supply of reducing power and energy and considering that T. pohliana lives overexposed to the sunlight, we hypothesize that citrate decarboxylation might be an accessory mechanism to increase internal CO(2) concentration during the day while its biosynthesis could provide NADH and ATP for nocturnal assimilation of nitrate. Therefore, besides delivering photoprotection during the day, citrate might represent a key component connecting both CAM pathway and nitrogen metabolism in T. pohliana: a scenario that certainly deserves further study not only in this species but also in other CAM plants that nocturnally accumulate citrate. (C) 2010 Elsevier GmbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum mechanics calculations at the ab initio HF/3-21G* level were carried out with Nuclear Magnetic Resonance (NMR) measurements to characterize citric acid and lithium interactions. The results indicate the formation of a tridentate organometallic compound with one lithium and one citric acid molecule and a tridentate and bidentate compound of two lithium atoms and one citric acid molecule. The results are in agreement with the experimental and theoretical data. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Potentiostatic and potentiodynamic studies were carried out to establish the inhibiting effects of citric acid on the pitting corrosion of tin. The critical potential (E-crit), which leads to pitting or general corrosion, was determined in sodium perchlorate solution in the pH range 1.0 to 4.0. Pit nucleation and growth, at pH 4.0, can be described by instantaneous nucleation followed by progressive nucleation. The results show that the minimum acid concentration needed to inhibit pitting of tin is 10(-2) M. Pitting occurrence by direct interaction between metal and perchlorate anions was observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: The aim of the present study was to compare the removal of the smear layer and exposure of collagen fibers of the root surface following the application of five citric acid solution concentrations. Methods and Materials: Two hundred seventy (270) samples were equally divided into six groups (n=45) for treatment with saline solution (control) and five different concentrations of citric acid (0.5, 1, 2, 15, and 25 percent). Three acid application methods were used (passive, brushing, and burnishing) as well as three application periods (1, 2, and 3 minutes). A previously trained, calibrated (kappa score = 0.93), and blind examiner subsequently scored scanning electron micrographs (SEMs) of the samples. Statistical analyses were performed by using Kruskal-Wallis and Dunn's post-hoc tests. Results: According to the results obtained and within the limitations of the methodology used, the citric acid applications were more effective than the control treatment of applying saline solution (p<0.05). However, no statistically significant differences were observed among the three application methods and three application periods. Descriptive analyses showed that best results for exposure of collagen fibers were obtained with the application of citric acid at 25 percent by brushing for 1 or 3 minutes. Conclusions: The best results for exposure of collagen fibers in this study were obtained with application of citric acid at 25 percent by brushing for 1 or 3 minutes, even though there were no statistically significant differences among the groups. Clinical Significance: The best results for exposure of collagen fibers on root surfaces noted in this study were obtained with application of citric acid at 25 percent by brushing for 1 or 3 minutes. © 2010 Seer Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to establish the parameters of concentration, time and mode of application of citric acid and sodium citrate in relation to root conditioning. A total of 495 samples were obtained and equally distributed among 11 groups (5 for testing different concentrations of citric acid, 5 for testing different concentrations of sodium citrate and 1 control group). After laboratorial processing, the samples were analyzed under scanning electron microscopy. A previously calibrated and blind examiner evaluated micrographs of the samples. Non-parametric statistical analysis was performed to analyze the data obtained. Brushing 25% citric acid for 3 min, promoted greater exposure of collagen fibers in comparison with the brushing of 1% citric acid for 1 minute and its topical application at 1% for 3 min. Sodium citrate exposed collagen fibers in a few number of samples. Despite the lack of statistical significance, better results for collagen exposure were obtained with brushing application of 25% citric acid for 3 min than with other application parameter. Sodium citrate produced a few number of samples with collagen exposure, so it is not indicated for root conditioning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of advanced electronic ceramics is directly related to the synthesis route employed. Sol-gel methods are widely used for this purpose. However, the physicochemical intermediate steps are still not well understood. Better understanding and control of these processes can improve the final quality of samples. In this work, we studied theoretically the formation of metal complexes between citric acid and lithium or barium metal cations with different citric acid/metal proportions, using Density Functional Theory electronic structure calculations. Infrared and Raman scattering spectra were simulated for the more stable geometric configurations. Using this methodology, we identified some features of complexes formed in the synthesis process. Our results show that the complexes can be distinguished by changes in the bands assigned to C=O, COH-, and COO- group vibrations. An estimate of the most stable complexes is made based on total energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Voltammetry has been employed to study the influence of systematic additions of citric acid on the E-I curves of Tin in 0.5 M NaClO4, in order to verify the film growth in the presence of the organic acid and the inhibition of the pitting corrosion of the metal. The minimum concentration of the organic acid needed to change the GI curves is 10(-2) M, in the pH range 1.0-4.0. At pH 3.0 and 4.0, the scan rate dependence on current density, in the potential region of formation and reduction of the film, showed that in a first stage adsorption occurs. In a second stage, the v(1/2) dependence found can he explained by ohmic resistance control. The formation of tin/citric acid complexes, 10(-2) M, is suggested. The pitting inhibition may be due to the formation of a mixed layer of tin in citric acid concentrations higher than 10(-2) oxide and tin citrate complexes on the electrode surface. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: This study aims to compare the clot stabilization on root surfaces conditioned with citric acid and ethylenediaminetetraacetic acid (EDTA). Materials and methods: Scaled root samples (n = 100) were set in five groups: group I?control group (saline solution); group II (24% EDTA); group III (25% citric acid); group IV (EDTA + citric acid); group V (citric acid + EDTA). Fifty samples were assessed using the root surface modification index (RSMI). The other 50 received a blood drop after conditioning. Clot formation was assessed using blood elements adhesion index (BEAI). A blind examiner evaluated photomicrographs. Statistical analysis considered p < 0.05. Results: Groups-III and G-V attained the best results for RSMI and BEAI in comparison to control. The worst results for clot stabilization were seen in group-II. EDTA employment before citric acid (group-IV) reduced clot formation in comparison to citric acid use alone (group-III). Conclusion: Root conditioning with citric acid alone and before EDTA had the best results for smear layer removal and clot stabilization. EDTA inhibited clot stabilization on root surface and must have a residual activity once it has diminished clot adhesion to root even after citric acid conditioning. Thus, EDTA can be used to neutralize citric acid effects on periodontal cells without affecting clot stabilization. Clinical significance: To demonstrate that citric acid use on root surfaces previously affected by periodontal disease may favor clot stabilization and may have a beneficial effect on surgical outcomes. Also, EDTA can be used to neutralize citric acid effects on periodontal cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: to evaluated the effect of treating root-adhered necrotic periodontal ligament (PDL) with citric acid on the healing process in delayed rat tooth replantation. Material and Methods: Forty Wistar rats, assigned to 4 groups (n=10), had their upper right incisor extracted and kept dry on a workbench. For Group I (control), the teeth were replanted after a 5 min extra-alveolar time. For the other groups, replantation was hydroxide-based paste and the teeth were replanted with no root surface treatment. In Group III, the teeth were immersed in citric acid (pH 1) for replanted. In Group IV, instead of the immersion, the roots were scrubbed with gauze soaked in citric acid and the teeth were replanted. The animals difference (p > 0.05) was found among the groups regarding the areas difference (p < 0.05) between the control group and Group IV regarding ankylosis. The control group showed the least replacement resorption percent means compared to the other groups (p < 0.05). The root structure was more affected by replacement resorption and ankylosis in Group IV statistically (p > 0.05). Conclusion: the treatment of root surface-adhered necrotic periodontal ligament with citric acid was not able to prevent the delayed rat tooth replantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: to evaluated the effect of treating root-adhered necrotic periodontal ligament (PDL) with citric acid on the healing process in delayed rat tooth replantation. Material and Methods: Forty Wistar rats, assigned to 4 groups (n=10), had their upper right incisor extracted and kept dry on a workbench. For Group I (control), the teeth were replanted after a 5 min extra-alveolar time. For the other groups, replantation was done after 60 min. In Group II, the root canals were filled with a calcium hydroxide-based paste and the teeth were replanted with no root surface treatment. In Group III, the teeth were immersed in citric acid (pH 1) for 3 min, the canals were filled with calcium hydroxide and the teeth were replanted. In Group IV, instead of the immersion, the roots were scrubbed with gauze soaked in citric acid and the teeth were replanted. The animals were sacrificed 60 days postoperatively. Results: Regarding replacement resorption, there was statistically significant difference (p < 0.05) between the control group and the other three groups. No statistically significant difference (p > 0.05) was found among the groups regarding the areas of inflammatory resorption. There was also a statistically significant difference (p < 0.05) between the control group and Group IV regarding ankylosis. The control group showed the least replacement resorption percent means compared to the other groups (p < 0.05). The root structure was more affected by replacement resorption and ankylosis in Group IV compared to the Groups II and III, but this difference was not significant statistically (p > 0.05). Conclusion: the treatment of root surface-adhered necrotic periodontal ligament with citric acid was not able to prevent the occurrence of ankylosis, root resorption and inflammatory resorption in delayed rat tooth replantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been demonstrated previously that the mammalian heart cannot sustain physiologic levels of pressure-volume work if ketone bodies are the only substrates for respiration. In order to determine the metabolic derangement responsible for contractile failure in hearts utilizing ketone bodies, rat hearts were prefused at a near-physiologic workload in a working heart apparatus with acetoacetate and competing or alternate substrates including glucose, lactate, pyruvate, propionate, leucine, isoleucine, valine and acetate. While the pressure-volume work for hearts utilizing glucose was stable for 60 minutes of perfusion, performance fell by 30 minutes for hearts oxidizing acetoacetate as the sole substrate. The tissue content of 2-oxoglutarate and its transamination product, glutamate, were elevated in hearts utilizing acetoacetate while succinyl-CoA was decreased suggesting impaired flux through the citric acid cycle at the level of 2-oxoglutarate dehydrogenase. Further studies indicated that the inhibition of 2-oxoglutarate dehydrogenase developed prior to the onset of contractile failure and that the inhibition of the enzyme may be related to sequestration of the required cofactor, coenzyme A, as the thioesters acetoacetyl-CoA and acetyl-CoA. The contractile failure was not observed when glucose, lactate, pyruvate, propionate, valine or isoleucine were present together with acetoacetate, but the addition of acetate or leucine to acetoacetate did not improve performance indicating that improved performance is not mediated through the provision of additional acetyl-CoA. Furthermore, addition of competing substrates that improved function did not relieve the inhibition of 2-oxoglutarate dehydrogenase and actually resulted in the further accumulation of citric acid cycle intermediates "upstream" of 2-oxoglutarate dehydrogenase (2-oxoglutarate, glutamate, citrate and malate). Studies with (1-$\sp{14}$C) pyruvate indicate that the utilization of ketone bodies is associated with activation of NADP$\sp+$dependent malic enzyme and enrichment of the C4 pool of the citric acid cycle. The results suggest that contractile failure induced by ketone bodies in rat heart results from inhibition of 2-oxoglutarate dehydrogenase and that reversal of contractile failure is dissociated from relief of the inhibition, but rather is due to the entry of carbon units into the citric acid cycle as compounds other than acetyl-CoA. This mechanism of enrichment (anaplerosis) provides oxaloacetate for condensation with acetyl-CoA derived from ketone bodies allowing continued energy production by sustaining flux through a span of the citric acid cycle up to the point of inhibition at 2-oxoglutarate dehydrogenase for energy production thereby producing the reducing equivalents necessary to sustain oxidative phosphorylation. ^