710 resultados para cingulate gyrus


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In der vorliegenden Arbeit sollte die Fähigkeit untersucht werden, Schmerzreize auf der Haut zu lokalisieren und deren Intensität zu differenzieren. Während dieser Diskriminationsaufgaben wurde die elektrische Aktivität des Gehirns gemessen.Traditionell werden dem nozizeptiven System nur geringe Diskriminationsleistungen zugeschrieben. In einer ersten Versuchsreihe sollten daher die räumlichen Diskriminationsleistungen für nozizeptive und taktile Reize verglichen werden. Auf dem Handrücken konnten schmerzhaft Laserhitzereize genauso gut lokalisiert werden wie taktile Reize (von-Frey-Haar). Nur ein mechanischer Nadelreiz, der taktiles und nozizeptives System koaktivierte, konnte noch besser lokalisiert werden. In der zweiten Versuchsreihe wurden während verschiedener Diskriminationsaufgaben (räumliche Diskrimination, Intensitätsdiskrimination) und einer Ablenkungsaufgabe (mentale Arithmetik) Laser-evozierte Potenziale von der Kopfhaut abgeleitet. Eine Dipolquellenanalyse zeigte als erstes eine Aktivierung des frontalen Operculums, entsprechend einem zur Zeit noch umstrittenen Projektionsgebiet eines nozizeptiven Thalamuskerns (VMpo), gefolgt vom primären somatosensorische Kortex (SI) und dem Gyrus cinguli. Im Gegensatz zum taktilen System wurde SI signifikant später aktiviert als SII (bzw. das Operculum). Die Diskriminationsaufgaben erhöhten die Aktivität aller Quellen im Vergleich zu der Ablenkungsbedingung. Dies konnte sogar für die früheste Quelle im Operculum gezeigt werden.Die frühe sensorisch-diskriminative Komponente der Schmerzverarbeitung im Operculum zeigte eine Hemisphärenasymmetrie, mit stärkerer Aktivierung der linken Hemisphäre unabhängig von der Stimulationsseite.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L'epilessia frontale notturna (EFN) è caratterizzata da crisi motorie che insorgono durante il sonno. Scopo del progetto è studiare le cause fisiopatologiche e morfo-funzionali che sottendono ai fenomeni motori nei pazienti con EFN e identificare alterazioni strutturali e/o metaboliche mediante tecniche avanzate di Risonanza Magnetica (RM). Abbiamo raccolto una casistica di pazienti con EFN afferenti al Centro Epilessia e dei Disturbi del Sonno del Dipartimento di Scienze Neurologiche, Università di Bologna. Ad ogni paziente è stato associato un controllo sano di età (± 5 anni) e sesso corrispondente. Tutti sono stati studiati mediante tecniche avanzate di RM comprendenti Spettroscopia del protone (1H-MRS), Tensore di diffusione ed imaging 3D ad alta risoluzione per analisi morfometriche. In particolare, la 1H-MRS è stata effettuata su due volumi di interesse localizzati nei talami e nel giro del cingolo anteriore. Sono stati inclusi nell’analisi finale 19 pazienti (7 M), età media 34 anni (range 19-50) e 14 controlli (6 M) età media 30 anni (range 19-40). A livello del cingolo anteriore il rapporto della concentrazione di N-Acetil-Aspartato rispetto alla Creatina (NAA/Cr) è risultato significativamente ridotto nei pazienti rispetto ai controlli (p=0,021). Relativamente all’analisi di correlazione, l'analisi tramite modelli di regressione multipla ha evidenziato che il rapporto NAA/Cr nel cingolo anteriore nei pazienti correlava con la frequenza delle crisi (p=0,048), essendo minore nei pazienti con crisi plurisettimanali/plurigiornaliere. Per interpretare il dato ottenuto è possibile solo fare delle ipotesi. L’NAA è un marker di integrità, densità e funzionalità neuronale. E’ possibile che alla base della EFN ci siano alterazioni metaboliche tessutali in precise strutture come il giro del cingolo anteriore. Questo apre nuove possibilità sull’utilizzo di strumenti di indagine basati sull’analisi di biosegnali, per caratterizzare aree coinvolte nella genesi della EFN ancora largamente sconosciute e chiarire ulteriormente l’eziologia di questo tipo di epilessia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reward related behaviour is linked to dopaminergic neurotransmission. Our aim was to gain insight into dopaminergic involvement in the human reward system. Combining functional magnetic resonance imaging with dopaminergic depletion by α-methylparatyrosine we measured dopamine-related brain activity in 10 healthy volunteers. In addition to blood-oxygen-level-dependent (BOLD) contrast we assessed the effect of dopaminergic depletion on prolactin response, peripheral markers for dopamine and norepinephrine. In the placebo condition we found increased activation in the left caudate and left cingulate gyrus during anticipation of reward. In the α-methylparatyrosine condition there was no significant brain activation during anticipation of reward or loss. In α-methylparatyrosine, anticipation of reward vs. loss increased activation in the right insula, left frontal, right parietal cortices and right cingulate gyrus. Comparing placebo versus α-methylparatyrosine showed increased activation in the left cingulate gyrus during anticipation of reward and the left medial frontal gyrus during anticipation of loss. α-methylparatyrosine reduced levels of dopamine in urine and homovanillic acid in plasma and increased prolactin. No significant effect of α-methylparatyrosine was found on norepinephrine markers. Our findings implicate distinct patterns of BOLD underlying reward processing following dopamine depletion, suggesting a role of dopaminergic neurotransmission for anticipation of monetary reward.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Focal onset epilepsies most often occur in the temporal lobes. To improve diagnosis and therapy of patients suffering from pharmacoresistant temporal lobe epilepsy it is highly important to better understand the underlying functional and structural networks. In mesial temporal lobe epilepsy (MTLE) widespread functional networks are involved in seizure generation and propagation. In this study we have analyzed the spatial distribution of hemodynamic correlates (HC) to interictal epileptiform discharges on simultaneous EEG/fMRI recordings and relative grey matter volume (rGMV) reductions in 10 patients with MTLE. HC occurred beyond the seizure onset zone in the hippocampus, in the ipsilateral insular/operculum, temporo-polar and lateral neocortex, cerebellum, along the central sulcus and bilaterally in the cingulate gyrus. rGMV reductions were detected in the middle temporal gyrus, inferior temporal gyrus and uncus to the hippocampus, the insula, the posterior cingulate and the anterior lobe of the cerebellum. Overlaps between HC and decreased rGMV were detected along the mesolimbic network ipsilateral to the seizure onset zone. We conclude that interictal epileptic activity in MTLE induces widespread metabolic changes in functional networks involved in MTLE seizure activity. These functional networks are spatially overlapping with areas that show a reduction in relative grey matter volumes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CONTEXT: A characteristic feature of borderline personality disorder (BPD) is self-injurious behavior in conjunction with stress-induced reduction of pain perception. Reduced pain sensitivity has been experimentally confirmed in patients with BPD, but the neural correlates of antinociceptive mechanisms in BPD are unknown. We predicted that heat stimuli in patients with BPD would activate brain areas concerned with cognitive and emotional evaluation of pain. OBJECTIVE: To assess the psychophysical properties and neural correlates of altered pain processing in patients with BPD. DESIGN: Case-control study. SETTING: A university hospital. PARTICIPANTS: Twelve women with BPD and self-injurious behavior and 12 age-matched control subjects. INTERVENTIONS: Psychophysical assessment and blood oxygen level-dependent functional magnetic resonance imaging during heat stimulation with fixed-temperature heat stimuli and individual-temperature stimuli adjusted for equal subjective pain in all the participants. MAIN OUTCOME MEASURE: Blood oxygen level-dependent functional magnetic resonance imaging signal changes during heat pain stimulation. RESULTS: Patients with BPD had higher pain thresholds and smaller overall volumes of activity than controls in response to identical heat stimuli. When the stimulus temperature was individually adjusted for equal subjective pain level, overall volumes of activity were similar, although regional patterns differed significantly. Patient response was greater in the dorsolateral prefrontal cortex and smaller in the posterior parietal cortex. Pain also produced neural deactivation in the perigenual anterior cingulate gyrus and the amygdala in patients with BPD. CONCLUSION: The interaction between increased pain-induced response in the dorsolateral prefrontal cortex and deactivation in the anterior cingulate and the amygdala is associated with an antinociceptive mechanism in patients with BPD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: NoGo-stimuli during a Continuous Performance Test (CPT) activate prefrontal brain structures such as the anterior cingulate gyrus and lead to an anteriorisation of the positive electrical field of the NoGo-P300 relative to the Go-P300, so-called NoGo-anteriorisation (NGA). NGA during CPT is regarded as a neurophysiological standard index for cognitive response control. While it is known that patients with chronic schizophrenia exhibit a significant reduction in NGA, it is unclear whether this also occurs in patients undergoing their first-episode. Thus, the aim of the present study was to determine NGA in a group of patients with first-episode schizophrenia by utilizing a CPT paradigm. METHODS: Eighteen patients with first-episode schizophrenia and 18 matched healthy subjects were investigated electrophysiologically during a cued CPT, and the parameters of the Go- and NoGo-P300 were determined using microstate analysis. Low resolution tomography analysis (LORETA) was used for source determination. RESULTS: Due to a more posterior Go- and a more anterior NoGo-centroid, NGA was greater in patients than in healthy controls. LORETA indicated the same sources for both groups after Go-stimuli, but a more anterior source in patients after NoGo-stimuli. In patients P300-amplitude responses to both Go- and NoGo-stimuli were decreased, and P300-latency to NoGo-stimuli was increased. After the Go-stimuli false reactions and reaction times were increased in patients. CONCLUSIONS: Attention was reduced in patients with first-episode schizophrenia, as indicated by more false reactions, prolongation of reaction time, P300-latencies and by a decrease in P300-amplitude. Significantly however, the NGA and prefrontal LORETA-sources indicate intact prefrontal brain structures in first-episode schizophrenia patients. Previously described changes in this indicator of prefrontal function may be related to a progressive decay in chronic schizophrenia. SIGNIFICANCE: The results support the idea of a possible new biological marker of first episode psychosis, which may be a useful parameter for the longitudinal measurement of changing prefrontal brain function in a single schizophrenia patient.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A multistudy analysis of positron emission tomography data identified three right prefrontal and two left prefrontal cortical sites, as well as a region in the anterior cingulate gyrus, where neuronal activity is correlated with the maintenance of episodic memory retrieval mode (REMO), a basic and necessary condition of remembering past experiences. The right prefrontal sites were near the frontal pole [Brodmann's area (BA) 10], frontal operculum (BA 47/45), and lateral dorsal area (BA 8/9). The two left prefrontal sites were homotopical with the right frontal pole and opercular sites. The same kinds of REMO sites were not observed in any other cerebral region. Many previous functional neuroimaging studies of episodic memory retrieval have reported activations near the frontal REMO sites identified here, although their function has not been clear. Many of these, too, probably have signaled their involvement in REMO. We propose that REMO activations largely if not entirely account for the frontal hemispheric asymmetry of retrieval as described by the original hemispheric encoding retrieval asymmetry model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Little is known about the physiological mechanisms subserving the experience of air hunger and the affective control of breathing in humans. Acute hunger for air after inhalation of CO2 was studied in nine healthy volunteers with positron emission tomography. Subjective breathlessness was manipulated while end-tidal CO2- was held constant. Subjects experienced a significantly greater sense of air hunger breathing through a face mask than through a mouthpiece. The statistical contrast between the two conditions delineated a distributed network of primarily limbic/paralimbic brain regions, including multiple foci in dorsal anterior and middle cingulate gyrus, insula/claustrum, amygdala/periamygdala, lingual and middle temporal gyrus, hypothalamus, pulvinar, and midbrain. This pattern of activations was confirmed by a correlational analysis with breathlessness ratings. The commonality of regions of mesencephalon, diencephalon and limbic/paralimbic areas involved in primal emotions engendered by the basic vegetative systems including hunger for air, thirst, hunger, pain, micturition, and sleep, is discussed with particular reference to the cingulate gyrus. A theory that the phylogenetic origin of consciousness came from primal emotions engendered by immediate threat to the existence of the organism is discussed along with an alternative hypothesis by Edelman that primary awareness emerged with processes of ongoing perceptual categorization giving rise to a scene [Edelman, G. M. (1992) Bright Air, Brilliant Fire (Penguin, London)].

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The inherent neurotoxic potential ofthe endogenous excitatory amino acid glutamate, may be causally related to the pathogenesis ofAD neurodegeneration disorders. Neuronal excitotoxicity is conceivably mediated by the N-methyl-D-aspartate-(NMDA)-Ca2+- ionotropic receptor. NMDA receptors exist as multimeric complexes comprising proteins from two families – NR1 and NR2(A-D). The polyamines, spermine and spermidine bind to, and modulate NMDA receptor efficacy via interaction with exon 5, an alternatively-spliced, 21 amino acid, N-terminal cassette. ADassociated cognitive impairment may therefore occur via subunitspecific NMDA receptor dysfunction effecting regional selectivity ofneuronal degradation. Total RNA was prepared from pathologically spared and susceptible regions from AD cases and matched controls. Quantitation was performed using standard curve methodology in which a known amount ofa synthetic ribonucleic acid competitor deletion construct was co-amplified against total RNA. Expression profile analysis oftwo NR1 mRNA subsets has revealed significant differences in NR11XX mRNA levels in cingulate gyrus, P.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Verbal working memory and emotional self-regulation are impaired in Bipolar Disorder (BD). Our aim was to investigate the effect of Lamotrigine (LTG), which is effective in the clinical management of BD, on the neural circuits subserving working memory and emotional processing. Functional Magnetic Resonance Imaging data from 12 stable BD patients was used to detect LTG-induced changes as the differences in brain activity between drug-free and post-LTG monotherapy conditions during a verbal working memory (N-back sequential letter task) and an angry facial affect recognition task. For both tasks, LGT monotherapy compared to baseline was associated with increased activation mostly within the prefrontal cortex and cingulate gyrus, in regions normally engaged in verbal working memory and emotional processing. Therefore, LTG monotherapy in BD patients may enhance cortical function within neural circuits involved in memory and emotional self-regulation. © 2007 Elsevier B.V. and ECNP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three hypotheses have been proposed to explain neuropathological heterogeneity in Alzheimer's disease (AD): the presence of distinct subtypes ('subtype hypothesis'), variation in the stage of the disease ('phase hypothesis') and variation in the origin and progression of the disease ('compensation hypothesis'). To test these hypotheses, variation in the distribution and severity of senile plaques (SP) and neurofibrillary tangles (NFT) was studied in 80 cases of AD using principal components analysis (PCA). Principal components analysis using the cases as variables (Q-type analysis) suggested that individual differences between patients were continuously distributed rather than the cases being clustered into distinct subtypes. In addition, PCA using the abundances of SP and NFT as variables (R-type analysis) suggested that variations in the presence and abundance of lesions in the frontal and occipital lobes, the cingulate gyrus and the posterior parahippocampal gyrus were the most important sources of heterogeneity consistent with the presence of different stages of the disease. In addition, in a subgroup of patients, individual differences were related to apolipoprotein E (ApoE) genotype, the presence and severity of SP in the frontal and occipital cortex being significantly increased in patients expressing apolipoprotein (Apo)E allele ε4. It was concluded that some of the neuropathological heterogeneity in our AD cases may be consistent with the 'phase hypothesis'. A major factor determining this variation in late-onset cases was ApoE genotype with accelerated rates of spread of the pathology in patients expressing allele ε4.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background - Neural substrates of emotion dysregulation in adolescent suicide attempters remain unexamined. Method - We used functional magnetic resonance imaging to measure neural activity to neutral, mild or intense (i.e. 0%, 50% or 100% intensity) emotion face morphs in two separate emotion-processing runs (angry and happy) in three adolescent groups: (1) history of suicide attempt and depression (ATT, n = 14); (2) history of depression alone (NAT, n = 15); and (3) healthy controls (HC, n = 15). Post-hoc analyses were conducted on interactions from 3 group × 3 condition (intensities) whole-brain analyses (p < 0.05, corrected) for each emotion run. Results - To 50% intensity angry faces, ATT showed significantly greater activity than NAT in anterior cingulate gyral–dorsolateral prefrontal cortical attentional control circuitry, primary sensory and temporal cortices; and significantly greater activity than HC in the primary sensory cortex, while NAT had significantly lower activity than HC in the anterior cingulate gyrus and ventromedial prefrontal cortex. To neutral faces during the angry emotion-processing run, ATT had significantly lower activity than NAT in the fusiform gyrus. ATT also showed significantly lower activity than HC to 100% intensity happy faces in the primary sensory cortex, and to neutral faces in the happy run in the anterior cingulate and left medial frontal gyri (all p < 0.006,corrected). Psychophysiological interaction analyses revealed significantly reduced anterior cingulate gyral–insula functional connectivity to 50% intensity angry faces in ATT v. NAT or HC. Conclusions - Elevated activity in attention control circuitry, and reduced anterior cingulate gyral–insula functional connectivity, to 50% intensity angry faces in ATT than other groups suggest that ATT may show inefficient recruitment of attentional control neural circuitry when regulating attention to mild intensity angry faces, which may represent a potential biological marker for suicide risk.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives - Impaired attentional control and behavioral control are implicated in adult suicidal behavior. Little is known about the functional integrity of neural circuitry supporting these processes in suicidal behavior in adolescence. Method - Functional magnetic resonance imaging was used in 15 adolescent suicide attempters with a history of major depressive disorder (ATTs), 15 adolescents with a history of depressive disorder but no suicide attempt (NATs), and 14 healthy controls (HCs) during the performance of a well-validated go-no-go response inhibition and motor control task that measures attentional and behavioral control and has been shown to activate prefrontal, anterior cingulate, and parietal cortical circuitries. Questionnaires assessed symptoms and standardized interviews characterized suicide attempts. Results - A 3 group by 2 condition (go-no-go response inhibition versus go motor control blocks) block-design whole-brain analysis (p < .05, corrected) showed that NATs showed greater activity than ATTs in the right anterior cingulate gyrus (p = .008), and that NATs, but not ATTs, showed significantly greater activity than HCs in the left insula (p = .004) to go-no-go response inhibition blocks. Conclusions - Although ATTs did not show differential patterns of neural activity from HCs during the go-no-go response inhibition blocks, ATTs and NATs showed differential activation of the right anterior cingulate gyrus during response inhibition. These findings indicate that suicide attempts during adolescence are not associated with abnormal activity in response inhibition neural circuitry. The differential patterns of activity in response inhibition neural circuitry in ATTs and NATs, however, suggest different neural mechanisms for suicide attempt versus major depressive disorder in general in adolescence that should be a focus of further study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genome-wide association studies in bipolar disorder (BD)1 have implicated a single-nucleotide polymorphism (rs1006737, G right arrow A) in the CACNA1C gene, which encodes for the alpha 1c (CAV1.2) subunit of the voltage-gated, L-type calcium channel. Neuroimaging studies of healthy individuals report that this risk allele modulates brain function within limbic (amygdala, anterior cingulate gyrus) and hippocampal regions during tasks of reward processing2, 3 and episodic memory. Moreover, animal studies suggest that the CaV1.2 L-type calcium channels influence emotional behaviour through enhanced neurotransmission via the lateral amygdala pathway. On the basis of this evidence, we tested the hypotheses that the CACNA1C rs1006737 risk allele will modulate neural responses within predefined prefrontal and subcortical regions of interest during emotional face processing and that this effect would be amplified in BD patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Bipolar disorder is associated with dysfunction in prefrontal and limbic areas implicated in emotional processing. Aims: To explore whether lamotrigine monotherapy may exert its action by improving the function of the neural network involved in emotional processing. Method: We used functional magnetic resonance imaging to examine changes in brain activation during a sad facial affect recognition task in 12 stable patients with bipolar disorder when medication-free compared with healthy controls and after 12 weeks of lamotrigine monotherapy. Results: At baseline, compared with controls, patients with bipolar disorder showed overactivity in temporal regions and underactivity in the dorsal medial and right ventrolateral prefrontal cortex, and the dorsal cingulate gyrus. Following lamotrigine monotherapy, patients demonstrated reduced temporal and increased prefrontal activation. Conclusions: This preliminary evidence suggests that lamotrigine may enhance the function of the neural circuitry involved in affect recognition.