774 resultados para chromatic phrases
Resumo:
There are many popular models available for classification of documents like Naïve Bayes Classifier, k-Nearest Neighbors and Support Vector Machine. In all these cases, the representation is based on the “Bag of words” model. This model doesn't capture the actual semantic meaning of a word in a particular document. Semantics are better captured by proximity of words and their occurrence in the document. We propose a new “Bag of Phrases” model to capture this discriminative power of phrases for text classification. We present a novel algorithm to extract phrases from the corpus using the well known topic model, Latent Dirichlet Allocation(LDA), and to integrate them in vector space model for classification. Experiments show a better performance of classifiers with the new Bag of Phrases model against related representation models.
Resumo:
The boxicity (respectively cubicity) of a graph G is the least integer k such that G can be represented as an intersection graph of axis-parallel k-dimensional boxes (respectively k-dimensional unit cubes) and is denoted by box(G) (respectively cub(G)). It was shown by Adiga and Chandran (2010) that for any graph G, cub(G) <= box(G) log(2) alpha(G], where alpha(G) is the maximum size of an independent set in G. In this note we show that cub(G) <= 2 log(2) X (G)] box(G) + X (G) log(2) alpha(G)], where x (G) is the chromatic number of G. This result can provide a much better upper bound than that of Adiga and Chandran for graph classes with bounded chromatic number. For example, for bipartite graphs we obtain cub(G) <= 2(box(G) + log(2) alpha(G)] Moreover, we show that for every positive integer k, there exist graphs with chromatic number k such that for every epsilon > 0, the value given by our upper bound is at most (1 + epsilon) times their cubicity. Thus, our upper bound is almost tight. (c) 2015 Elsevier B.V. All rights reserved.
Resumo:
1 PDF document (8 pp., English).-- Contributed to: VSMM'08: 14th International Conference on Virtual Systems and Multimedia (Limassol, Cyprus, Oct 20-25, 2008)
Resumo:
Computer vision algorithms that use color information require color constant images to operate correctly. Color constancy of the images is usually achieved in two steps: first the illuminant is detected and then image is transformed with the chromatic adaptation transform ( CAT). Existing CAT methods use a single transformation matrix for all the colors of the input image. The method proposed in this paper requires multiple corresponding color pairs between source and target illuminants given by patches of the Macbeth color checker. It uses Delaunay triangulation to divide the color gamut of the input image into small triangles. Each color of the input image is associated with the triangle containing the color point and transformed with a full linear model associated with the triangle. Full linear model is used because diagonal models are known to be inaccurate if channel color matching functions do not have narrow peaks. Objective evaluation showed that the proposed method outperforms existing CAT methods by more than 21%; that is, it performs statistically significantly better than other existing methods.
Resumo:
Computer vision algorithms that use color information require color constant images to operate correctly. Color constancy of the images is usually achieved in two steps: first the illuminant is detected and then image is transformed with the chromatic adaptation transform ( CAT). Existing CAT methods use a single transformation matrix for all the colors of the input image. The method proposed in this paper requires multiple corresponding color pairs between source and target illuminants given by patches of the Macbeth color checker. It uses Delaunay triangulation to divide the color gamut of the input image into small triangles. Each color of the input image is associated with the triangle containing the color point and transformed with a full linear model associated with the triangle. Full linear model is used because diagonal models are known to be inaccurate if channel color matching functions do not have narrow peaks. Objective evaluation showed that the proposed method outperforms existing CAT methods by more than 21%; that is, it performs statistically significantly better than other existing methods.
Resumo:
Marggraf Turley, Richard, 'Keats, Cornwall and the 'Scent of Strong-Smelling Phrases,' Romanticism (2006) 12 (2), pp. 102-114 RAE2008
Resumo:
This study develops a neuromorphic model of human lightness perception that is inspired by how the mammalian visual system is designed for this function. It is known that biological visual representations can adapt to a billion-fold change in luminance. How such a system determines absolute lightness under varying illumination conditions to generate a consistent interpretation of surface lightness remains an unsolved problem. Such a process, called "anchoring" of lightness, has properties including articulation, insulation, configuration, and area effects. The model quantitatively simulates such psychophysical lightness data, as well as other data such as discounting the illuminant, the double brilliant illusion, and lightness constancy and contrast effects. The model retina embodies gain control at retinal photoreceptors, and spatial contrast adaptation at the negative feedback circuit between mechanisms that model the inner segment of photoreceptors and interacting horizontal cells. The model can thereby adjust its sensitivity to input intensities ranging from dim moonlight to dazzling sunlight. A new anchoring mechanism, called the Blurred-Highest-Luminance-As-White (BHLAW) rule, helps simulate how surface lightness becomes sensitive to the spatial scale of objects in a scene. The model is also able to process natural color images under variable lighting conditions, and is compared with the popular RETINEX model.
Resumo:
We define several new types of quantum chromatic numbers of a graph and characterize them in terms of operator system tensor products. We establish inequalities between these chromatic numbers and other parameters of graphs studied in the literature and exhibit a link between them and non-signalling correlation boxes.
Resumo:
We address the problem of mining interesting phrases from subsets of a text corpus where the subset is specified using a set of features such as keywords that form a query. Previous algorithms for the problem have proposed solutions that involve sifting through a phrase dictionary based index or a document-based index where the solution is linear in either the phrase dictionary size or the size of the document subset. We propose the usage of an independence assumption between query keywords given the top correlated phrases, wherein the pre-processing could be reduced to discovering phrases from among the top phrases per each feature in the query. We then outline an indexing mechanism where per-keyword phrase lists are stored either in disk or memory, so that popular aggregation algorithms such as No Random Access and Sort-merge Join may be adapted to do the scoring at real-time to identify the top interesting phrases. Though such an approach is expected to be approximate, we empirically illustrate that very high accuracies (of over 90%) are achieved against the results of exact algorithms. Due to the simplified list-aggregation, we are also able to provide response times that are orders of magnitude better than state-of-the-art algorithms. Interestingly, our disk-based approach outperforms the in-memory baselines by up to hundred times and sometimes more, confirming the superiority of the proposed method.
Resumo:
Chromatic Aberration is a film installation which explores the early technologies of colour filmmaking drawn from the archives of George Eastman House, Rochester, New York. Featuring vibrant close-ups of eyes from fledgling archival experiments in colour film, Chromatic Aberration turns the cinematic lens in on itself: from the prosthetic recording eye of the camera, to an evocation of the abstract inner screen of one's eyelids. Early 1920s colour film footage - mainly tests shots featuring members of George Eastman's family as well as Hollywood stars of the time - is shot in such a way so as to reveal the inherent chromatic fringing, distortion and misalignment. Using specialist equipment at the BFI National Archive, London, the footage is reworked through the use of extreme close-up and magnification, honing in on the eyes. The installation evokes an imagined abstract colour world, a flickering eyelid trapped in a mechanical peephole. Exhibitions: Solo exhibition as film installation at Tyneside Cinema (Newcastle, Oct-Nov 2014); Solo exhibition at George Eastman Museum (Rochester, New York, Jan-April 2015), including a second work on display. Film festivals nominations for competitions: Winner of Best Vanguard Film Competition in Lima Independiente International Film Festival (Peru). Nominations: Filmadrid festival (Spain); Curtas Vila do Conde film festival (Portugal); Festival du Nouveau Cinema (Canada); Jihlava International Documentary Film Festival (Czech Republic ); International Film Festival Bratislava (Slovenia). Additional screenings at International Rotterdam Film Festival (Netherlands); European Media Art Festival (Germany); BFI London Film Festival (UK); Mini-retrospective screening at DIM CINEMA, The Cinematheque (Vancouver May 2015). Reviews and interviews in Artforum, The Wire Magazine, After Image, Studio International. Public lectures: with Prof. Sarah Street at Tyneside Cinema (Nov 2014); Royal Academy visiting public lecture (Nov 2014); ‘The Laughter of Things’ symposium, International Film Festival Rotterdam and Piet Zwart Institute (Jan 2015); George Eastman Museum and Rochester University (April 2015). Acquired by the George Eastman Museum for their collection.