975 resultados para cholinergic receptor antibody


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present work is to understand the alterations of total Muscarinic and Muscarinic MI receptors in brain and pancreatic islets of Streptozotocin induced diabetic rats. The work focuses on the evaluation of the antihyperglycemic activity of aqueous extracts of Aegle marmelose and Costus pictus leaves in vivo and the changes in the total Muscarinic and Muscarinic MI receptors during diabetes and after the treatment with insulin. The insulin secretory activity of Aegle marmelose and Costus pictus leaf extracts and the effect of cholinergic receptor agonist were investigated in vitro using rat primary pancreatic islet culture. Muscarinic MI receptor kinetics and gene expression during diabetes and regulation of insulin secretion by Aegle marmelose and Costus pie/us leaf extracts will help us to elucidate the role of Muscarinic and Muscarinic MI receptors in hyperglycemia and the regulatory activity of these plant extracts on insulin secretion through Muscarinic receptors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Angiotensin II (ANG II) administered centrally produces drinking by acting on subtype 1 ANG II (AT1) receptors, Carbachol, a cholinergic receptor agonist, also induces drinking behavior by a central action. In the present study we determined whether the response to carbachol also involves AT1 receptors. Male Holtzman rats (250-300 g) with stainless steel cannula implanted into the lateral ventricle (LV) were used. Water intake after injection of 0.15 M NaCl (1.0 mu l) into the LV was 0.2 +/- 0.01 ml/h (N = 8). The AT1 receptor antagonist DUP-753 (50 nmol/mu l) injected into the LV reduced water intake induced by ANG II (10 nmol/mu l) from 9.2 +/- 1.4 to 0.4 +/- 0.1 ml/h (N = 8), and water intake induced by carbachol (2 nmol/mu l) from 9.8 +/- 1.4 ml/h to 3.7 +/- 0.8 ml/h (N = 8), These results suggest that AT1 receptors play a role in the drinking behavior observed after central cholinergic stimulation in rats.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cholinergic and adrenergic agonists and antagonists were injected directly into the subfornical organ (SFO), via implanted cannulae, and the volume of water ingested was recorded over a period of 1 hour after injection. Application of 2 nmol carbachol caused intense water intake in 100% of the animals (8.78±0.61 ml), with a very short intake latency. When the 2 nmol carbachol dose was preceded by increased doses of atropine, a progressive reduction in water intake was observed, with complete blockage of the thirst-inducing response to carbachol at the 20 nmol dose level with atropine. Followed by several doses of hexamethonium, the water intake caused by application of 2 nmol carbachol was reduced, although the response was not totally blocked. Injection of 80 nmol of nicotine had a significant thirst-inducing inducing effect in 50% of the animals studied (1.06±0.18 ml) and increase in water intake was further reduced by application of increased doses of hexamethonium. Raising the dose levels of noradrenaline into th SFO caused an increase in water intake although to a lesser degree than was observed after carbachol injection. When the 40 nmol dose of noradrenaline was preceded by increased doses of propranolol (5 to 40 nmol), there was a gradual reduction in water intake, with total blockage at the 40 nmol dose. Application of phentolamine in doses of 10 to 80 nmol caused no reduction in water intake after 40 nmol of noradrenaline. Application of isoproterenol at doses from 20 to 160 nmol into the SFO caused a dosedependent increase in water intake which was blocked by previous applications of propranolol. These results support the hypothesis that the water intake caused by chemical stimulation of the SFO is mainly due to muscarinic cholinergic receptors, although the influence of nicotinic receptors or participation of adrenergic mediation should not be ruled out. © 1984.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present study investigates the participation and interaction between cholinergic and opiate receptors of the medial septal area (MSA) in the regulation of Na+, K+ and water excretion, drinking and blood pressure regulation. Male Holtzman rats were implanted with stainless steel cannulae opening into the MSA. Na+, K+ and water excretion, water intake and blood pressure were measured after injection of carbachol (cholinergic agonist), FK-33824 (an opiate agonist) + carbachol or naloxone (an opiate antagonist) + carbachol into MSA. Carbachol (0.5 or 2.0 nmol) induced an increase in Na+ and K+ excretion, water intake and blood pressure and reduced the urinary volume. FK-33824 reduced the urinary volume and Na+ and K+ excretion. Previous injection of FK-33824 (100 ng) into the MSA blocked the increases in Na+ and K+ excretion, water intake and blood pressure induced by carbachol. Naloxone (10 μg) produced no changes in the effect of 2.0 nmol carbachol, but potentiated the natriuretic effect induced by 0.5 nmol dose of carbachol. These data show an inhibitory effect of opiate receptors on the changes in cardiovascular, fluid and electrolyte balance induced by cholinergic stimulation of the MSA in rats. © 1992.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cochlear root neurons (CRNs) are the first brainstem neurons which initiate and participate in the full expression of the acoustic startle reflex. Although it has been suggested that a cholinergic pathway from the ventral nucleus of the trapezoid body (VNTB) conveys auditory prepulses to the CRNs, the neuronal origin of the VNTB-CRNs projection and the role it may play in the cochlear root nucleus remain uncertain. To determine the VNTB neuronal type which projects to CRNs, we performed tract-tracing experiments combined with mechanical lesions, and morphometric analyses. Our results indicate that a subpopulation of non-olivocochlear neurons projects directly and bilaterally to CRNs via the trapezoid body. We also performed a gene expression analysis of muscarinic and nicotinic receptors which indicates that CRNs contain a cholinergic receptor profile sufficient to mediate the modulation of CRN responses. Consequently, we investigated the effects of auditory prepulses on the neuronal activity of CRNs using extracellular recordings in vivo. Our results show that CRN responses are strongly inhibited by auditory prepulses. Unlike other neurons of the cochlear nucleus, the CRNs exhibited inhibition that depended on parameters of the auditory prepulse such as intensity and interstimulus interval, showing their strongest inhibition at short interstimulus intervals. In sum, our study supports the idea that CRNs are involved in the auditory prepulse inhibition of the acoustic startle reflex, and confirms the existence of multiple cholinergic pathways that modulate the primary acoustic startle circuit. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, we investigated an interaction between noradrenergic and cholinergic pathways of the medial septal area (MSA) on the control of water intake and urinary electrolyte excretion by means of injection of their respective agonists. Noradrenaline (a nonspecific α-adrenergic agonist) and clonidine (an α2-adrenergic agonist), but not phenylephrine (an α1-adrenergic agonist), induced natriuresis and kaliuresis. α-Adrenergic activation had no effect on the natriuresis and kaliuresis induced by carbachol (a cholinergic agonist) and it inhibited the antinatriuresis and antikaliuresis induced by isoproterenol (a ß-adrenergic agonist). Interactions related to volume excretion are complex. α-Adrenergic activation induced a mild diuresis and inhibited the antidiuresis induced by isoproterenol, but phenylephrine combined with carbachol induced antidiuresis. The water intake induced by carbachol was inhibited by clonidine and noradrenaline, but not phenylephrine. These results show an asymmetry in the interaction between α-adrenergic and cholinergic receptors concerning water intake and electrolyte excretion. © 1992.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present experiments, we investigated a possible involvement of noradrenergic receptors of the lateral hypothalamus (LH) in the water intake and pressor response induced by cholinergic stimulation of the medial septal area (MSA) in rats. The cholinergic agonist carbachol (2 nmol) injected into the MSA induced water intake and pressor response. The injection of an α2-adrenergic agonist, clonidine (20 and 40 nmol), but not of an α1-adrenergic agonist, phenylephrine (80 and 160 nmol), into the LH inhibits the water intake induced by carbachol injected into the MSA. The injection of clonidine or phenylephrine into the LH produced no change in the MAP increase induced by carbachol injected into the MSA. The present results suggest that adrenergic pathways involving the LH are important for the water intake, but not for the pressor response, induced by cholinergic activation of the MSA. © 1994.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is already known that progressive degeneration of cholinergic neurons in brain areas such as the hippocampus and the cortex leads to memory deficits, as observed in Alzheimer's disease. This work verified the effects of the infusion of amyloid-beta (A beta) peptide associated to an attentional rehearsal on the density of alpha 7 nicotinic cholinergic receptor (nAChR) in the brain of male Wistar rats. Animals received intracerebroventricular infusion of A beta or vehicle (control - C) and their attention was stimulated weekly (Stimulated A beta group: S-A beta and Stimulated Control group: SC) or not (Non-Stimulated A beta group: N-SA beta and Non-Stimulated Control group: N-SC), using an active avoidance apparatus. Conditioned avoidance responses (CAR) were registered. Chronic infusion of A beta caused a 37% reduction in CAR for N-SA beta. In S-A beta, this reduction was not observed. At the end, brains were extracted and autoradiography for alpha 7 nAChR was conducted using [I-125]-alpha-bungarotoxin. There was an increase in alpha 7 density in hippocampus, cortex and amygdala of SA beta animals, together with the memory preservation. In recent findings from our lab using mice infused with A beta and the alpha 7 antagonist methyllycaconitine, and stimulated weekly in the same apparatus, it was observed that memory maintenance was abolished. So, the increase in alpha 7 density in brain areas related to memory might be related to a participation of this receptor in the long-lasting change in synaptic plasticity, which is important to improve and maintain memory consolidation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the central nervous system and alterations in central GABAergic transmission may contribute to the symptoms of a number of neurological and psychiatric disorders. Because of this relationship, numerous laboratories are attempting to develop agents which will selectively enhance GABA neurotransmission in brain. Due to these efforts, several promising compounds have recently been discovered. Should these drugs prove to be clinically effective, they will be used to treat chronic neuropsychiatric disabilities and, therefore, will be administered for long periods of time. Accordingly, the present investigation was undertaken to determine the neurochemical consequences of chronic activation of brain GABA systems in order to better define the therapeutic potential and possible side-effect liability of GABAmimetic compounds.^ Chronic (15 day) administration to rats of low doses of amino-oxyacetic acid (AOAA, 10 mg/kg, once daily), isonicotinic acid hydrazide (20 mg/kg, b.i.d.), two non-specific inhibitors of GABA-T, the enzyme which catabolizes GABA in brain, or (gamma)-acetylenic GABA (10 mg/kg, b.i.d.) a catalytic inhibitor of this enzyme, resulted in a significant elevation of brain and CSF GABA content throughout the course of treatment. In addition, chronic administration of these drugs, as well as the direct acting GABA receptor agonists THIP (8 mg/kg, b.i.d.) or kojic amine (18 mg/kg, b.i.d.) resulted in a significant increase in dopamine receptor number and a significant decrease in GABA receptor number in the corpus striatum of treated animals as determined by standard in vitro receptor binding techniques. Changes in the GABA receptor were limited to the corpus striatum and occurred more rapidly than did alterations in the dopamine receptor. The finding that dopamine-mediated stereotypic behavior was enhanced in animals treated chronically with AOAA suggested that the receptor binding changes noted in vitro have some functional consequence in vitro.^ Coadministration of atropine (a muscarinic cholinergic receptor antagonist) blocked the GABA-T inhibitor-induced increase in striatal dopamine receptors but was without effect on receptor alterations seen following chronic administration of direct acting GABA receptor agonists. Atropine administration failed to influence the drug-induced decreases in striatal GABA receptors.^ Other findings included the discovery that synaptosomal high affinity ('3)H-choline uptake, an index of cholinergic neuronal activity, was significantly increased in the corpus striatum of animals treated acutely, but not chronically, with GABAmimetics.^ It is suggested that the dopamine receptor supersensitivity observed in the corpus striatum of animals following long-term treatment with GABAmimetics is a result of the chronic inhibition of the nigrostriatal dopamine system by these drugs. Changes in the GABA receptor, on the other hand, are more likely due to a homospecific regulation of these receptors. An hypothesis based on the different sites of action of GABA-T inhibitors vis-a-vis the direct acting GABA receptor agonists is proposed to account for the differential effect of atropine on the response to these drugs.^ The results of this investigation provide new insights into the functional interrelationships that exist in the basal ganglia and suggest that chronic treatment with GABAmimetics may produce extrapyramidal side-effects in man. In addition, the constellation of neurochemical changes observed following administration of these drugs may be a useful guide for determining the GABAmimetic properties of neuropharmacological agents. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Considerable evidence suggests that central cholinergic neurons participate in either acquisition, storage or retrieval of information. Experiments were designed to evaluate information processing in mice following either reversible or irreversible impairment in central cholinergic activity. The cholinergic receptor antagonists, atropine and methylatropine were used to reversibly inhibit cholinergic transmission. Irreversible impairment in central cholinergic function was achieved by central administration of the cholinergic-specific neurotoxins, N-ethyl-choline aziridinium (ECA) and N-ethyl-acetylcholine aziridinium (EACA).^ ECA and EACA appear to act by irreversible inhibition of high affinity choline uptake (proposed rate-limiting step in acetylcholine synthesis). Intraventricular administration of ECA or EACA produced persistent reduction in hippocampal choline acetyltransferase activity. Other neuronal systems and brain regions showed no evidence of toxicity.^ Mice treated with either ECA or EACA showed behavioral deficits associated with cholinergic dysfunction. Passive avoidance behavior was significantly impaired by cholinotoxin treatment. Radial arm maze performance was also significantly impaired in cholinotoxin-treated animals. Deficits in radial arm maze performance were transient, however, such that rapid and apparent complete behavioral recovery was seen during retention testing. The centrally active cholinergic receptor antagonist atropine also caused significant impairment in radial arm maze behavior, while equivalent doses of methylatropine were without effect.^ The relative effects of cholinotoxin and receptor antagonist treatment on short-term (working) memory and long-term (reference) memory in radial arm maze behavior were examined. Maze rotation studies indicated that there were at least two different response strategies which could result in accurate maze performance. One strategy involved the use of response algorithms and was considered to be a function of reference memory. Another strategy appeared to be primarily dependent on spatial working memory. However, all behavioral paradigms with multiple trails have reference memory requirements (i.e. information useful over all trials). Performance was similarly affected following either cholinotoxin or anticholinergic treatment, regardless of the response strategy utilized. In addition, rates of behavioral recovery following cholinotoxin treatment were similar between response groups. It was concluded that both cholinotoxin and anticholinergic treatment primarily resulted in impaired reference memory processes. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The NOD (nonobese diabetic) mouse has been studied as an animal model for autoimmune insulin-dependent diabetes and Sjögren’s syndrome. NOD.Igμnull mice, which lack functional B lymphocytes, develop progressive histopathologic lesions of the submandibular and lachrymal glands similar to NOD mice, but in the absence of autoimmune insulitis and diabetes. Despite the focal appearance of T cells in salivary and lachrymal tissues, NOD.Igμnull mice fail to lose secretory function as determined by stimulation of the muscarinic/cholinergic receptor by the agonist pilocarpine, suggesting a role for B cell autoantibodies in mediating exocrine dryness. Infusion of purified serum IgG or F(ab′)2 fragments from parental NOD mice or human primary Sjögren’s syndrome patients, but not serum IgG from healthy controls, alters stimulated saliva production, an observation consistent with antibody binding to neural receptors. Furthermore, human patient IgG fractions competitively inhibited the binding of the muscarinic receptor agonist, [3H]quinuclidinyl benzilate, to salivary gland membranes. This autoantibody activity is lost after preadsorption with intact salivary cells. These findings indicate that autoantibodies play an important part in the functional impairment of secretory processes seen in connection with the autoimmune exocrinopathy of Sjögren’s syndrome.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Endocytosis of the Flaviviridae viruses, hepatitis C virus, GB virus C/hepatitis G virus, and bovine viral diarrheal virus (BVDV) was shown to be mediated by low density lipoprotein (LDL) receptors on cultured cells by several lines of evidence: by the demonstration that endocytosis of these virus correlated with LDL receptor activity, by complete inhibition of detectable endocytosis by anti-LDL receptor antibody, by inhibition with anti-apolipoprotein E and -apolipoprotein B antibodies, by chemical methods abrogating lipoprotein/LDL receptor interactions, and by inhibition with the endocytosis inhibitor phenylarsine oxide. Confirmatory evidence was provided by the lack of detectable LDL receptor on cells known to be resistant to BVDV infection. Endocytosis via the LDL receptor was shown to be mediated by complexing of the virus to very low density lipoprotein or LDL but not high density lipoprotein. Studies using LDL receptor-deficient cells or a cytolytic BVDV system indicated that the LDL receptor may be the main but not exclusive means of cell entry of these viruses. Studies on other types of viruses indicated that this mechanism may not be exclusive to Flaviviridae but may be used by viruses that associate with lipoprotein in the blood. These findings provide evidence that the family of LDL receptors may serve as viral receptors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Classical eyeblink conditioning is a well-characterized model paradigm that engages the septohippocampal cholinergic system. This form of associative learning is impaired in normal aging and severely disrupted in Alzheimer's disease (AD). Some nicotinic cholinergic receptor subtypes are lost in AD, making the use of nicotinic allosterically potentiating ligands a promising therapeutic strategy. The allosterically potentiating ligand galantamine (Gal) modulates nicotinic cholinergic receptors to increase acetylcholine release as well as acting as an acetylcholinesterase (AChE) inhibitor. Gal was tested in two preclinical experiments. In Experiment 1 with 16 young and 16 older rabbits, Gal (3.0 mg/kg) was administered for 15 days during conditioning, and the drug significantly improved learning, reduced AChE levels, and increased nicotinic receptor binding. In Experiment 2, 53 retired breeder rabbits were tested over a 15-wk period in four conditions. Groups of rabbits received 0.0 (vehicle), 1.0, or 3.0 mg/kg Gal for the entire 15-wk period or 3.0 mg/kg Gal for 15 days and vehicle for the remainder of the experiment. Fifteen daily conditioning sessions and subsequent retention and relearning assessments were spaced at 1-month intervals. The dose of 3.0 mg/kg Gal ameliorated learning deficits significantly during acquisition and retention in the group receiving 3.0 mg/kg Gal continuously. Nicotinic receptor binding was significantly increased in rabbits treated for 15 days with 3.0 mg/kg Gal, and all Gal-treated rabbits had lower levels of brain AChE. The efficacy of Gal in a learning paradigm severely impaired in AD is consistent with outcomes in clinical studies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Abeta peptide of Alzheimer disease is derived from the proteolytic processing of the amyloid precursor proteins (APP), which are considered type I transmembrane glycoproteins. Recently, however, soluble forms of full-length APP were also detected in several systems including chromaffin granules. In this report we used antisera specific for the cytoplasmic sequence of APP to show that primary bovine chromaffin cells secrete a soluble APP, termed solAPPcyt, of an apparent molecular mass of 130 kDa. This APP was oversecreted from Chinese hamster ovary cells transfected with a full-length APP cDNA indicating that solAPPcyt contained both the transmembrane and Abeta sequence. Deglycosylation of solAPPcyt showed that it contained both N- and O-linked sugars, suggesting that this APP was transported through the endoplasmic reticulum-Golgi pathway. Secretion of solAPPcyt from primary chromatin cells was temperature-, time-, and energy-dependent and was stimulated by cell depolarization in a Ca2+-dependent manner. Cholinergic receptor agonists, including acetylcholine, nicotine, or carbachol, stimulated the rapid secretion of solAPPcyt, a process that was inhibited by cholinergic antagonists. Stimulation of solAPPcyt secretion was paralleled by a stimulation of secretion in catecholamines and chromogranin A, indicating that secretion of solAPPcyt was mediated by chromaffin granule vesicles. Taken together, our results show that release of the potentially amyloidogenic solAPPcyt is an active cellular process mediated by both the constitutive and regulated pathways. solAPPcyt was also detected in human cerebrospinal fluid. Combined with the neuronal physiology of chromaffin cells, our data suggest that cholinergic agonists may stimulate the release of this APP in neuronal synapses where it may exert its biological functions. Moreover, vesicular or secreted solAPPcyt may serve as a soluble precursor of Abeta.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aptamers are proving their utility in a number of applications. However, to be easily functionalized, their structure needs to be simplified. Therefore, we sought to truncate a 50-nucleotide aptamer specific to the transferrin receptor to its smallest functional unit using rational engineering of the predicted two-dimensional structure of the longer parent sequence. In addition, mutations were introduced into the binding loop to determine their effect on the selectivity of the aptamers. These base mutations enhanced the binding affinity of the aptamer, while retaining its specificity. The equilibrium dissociation constant (Kd) was reduced sixfold following the substitution of all four bases in the binding region. In addition, these aptamers were efficiently internalized into transferrin receptor-positive cells in a similar manner to the transferrin receptor antibody and demonstrated colocalization with this antibody. This study has shown that the smallest functional unit of this aptamer was 14 nucleotides. This small size will be advantageous for future applications, such as drug delivery or functionalization of other therapeutic modalities.