941 resultados para characteristic matrix method


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The equilibria, the spectra and the identities of the species of Cr(VI) that are present in aqueous solution have long been an active subject of discussion in the literature. In this paper, three different chemometric methodologies are applied to sets of UV/Visible spectra of aqueous Cr(VI) solutions, in order to solve a chemical system where there is no available information concerning the composition of the samples nor spectral information about the pure species. Imbrie Q-mode factor analysis, followed by varimax rotation and Imbrie oblique projection, were used to estimate the composition of Cr(VI) equilibrium solutions and, by combining these results with the k-matrix method, to obtain the pure spectra of the species. Evolving factor analysis and self modeling curve resolution were used to confirm the number of the species and the resolution of the system, respectively. Sets of 3.3×10-4 and 3.3×10-5 mol L-1 Cr(VI) solutions, respectively, were analyzed in the pH range from 1 to 12. Two factors were identified, which were related to the chromate ion (CrO4(2-)) and bichromate ion (HCrO4-). The pK of the equilibrium was estimated as 5.8.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work reports our succesfull experience concerning crystallization of four fish hemoglobins from three Brazilian species of Teleosts: Liposarcus anisitsi, Brycon cephalus and Piaractus mesopotamicus. The data shown here is part of a systematic functional and structural study of fish hemoglobins with the aim of better understanding the outstanding range of functional and structural properties exhibited by these proteins. We also present a reduced sparse-matrix method for crystallization of fish hemoglobins, which can reduce the amount of hemoglobin initially used in the crystallization experiments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, we consider the properties of planar topological defects in unconventional superconductors. Specifically, we calculate microscopically the interaction energy of domain walls separating degenerate ground states in a chiral p-wave fermionic superfluid. The interaction is mediated by the quasiparticles experiencing Andreev scattering at the domain walls. As a by-product, we derive a useful general expression for the free energy of an arbitrary nonuniform texture of the order parameter in terms of the quasiparticle scattering matrix. The thesis is structured as follows. We begin with a historical review of the theories of superconductivity (Sec. 1.1), which led the way to the celebrated Bardeen-Cooper- Schrieffer (BCS) theory (Sec. 1.3). Then we proceed to the treatment of superconductors with so-called "unconventional pairing" in Sec. 1.4, and in Sec. 1.5 we introduce the specific case of chiral p-wave superconductivity. After introducing in Sec. 2 the domain wall (DW) model that will be considered throughout the work, we derive the Bogoliubov-de Gennes (BdG) equations in Sec. 3.1, which determine the quasiparticle excitation spectrum for a nonuniform superconductor. In this work, we use the semiclassical (Andreev) approximation, and solve the Andreev equations (which are a particular case of the BdG equations) in Sec. 4 to determine the quasiparticle spectrum for both the single- and two-DW textures. The Andreev equations are derived in Sec. 3.2, and the formal properties of the Andreev scattering coefficients are discussed in the following subsection. In Sec. 5, we use the transfer matrix method to relate the interaction energy of the DWs to the scattering matrix of the Bogoliubov quasiparticles. This facilitates the derivation of an analytical expression for the interaction energy between the two DWs in Sec. 5.3. Finally, to illustrate the general applicability our method, we apply it in Sec. 6 to the interaction between phase solitons in a two-band s-wave superconductor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Les modèles sur réseau comme ceux de la percolation, d’Ising et de Potts servent à décrire les transitions de phase en deux dimensions. La recherche de leur solution analytique passe par le calcul de la fonction de partition et la diagonalisation de matrices de transfert. Au point critique, ces modèles statistiques bidimensionnels sont invariants sous les transformations conformes et la construction de théories des champs conformes rationnelles, limites continues des modèles statistiques, permet un calcul de la fonction de partition au point critique. Plusieurs chercheurs pensent cependant que le paradigme des théories des champs conformes rationnelles peut être élargi pour inclure les modèles statistiques avec des matrices de transfert non diagonalisables. Ces modèles seraient alors décrits, dans la limite d’échelle, par des théories des champs logarithmiques et les représentations de l’algèbre de Virasoro intervenant dans la description des observables physiques seraient indécomposables. La matrice de transfert de boucles D_N(λ, u), un élément de l’algèbre de Temperley- Lieb, se manifeste dans les théories physiques à l’aide des représentations de connectivités ρ (link modules). L’espace vectoriel sur lequel agit cette représentation se décompose en secteurs étiquetés par un paramètre physique, le nombre d de défauts. L’action de cette représentation ne peut que diminuer ce nombre ou le laisser constant. La thèse est consacrée à l’identification de la structure de Jordan de D_N(λ, u) dans ces représentations. Le paramètre β = 2 cos λ = −(q + 1/q) fixe la théorie : β = 1 pour la percolation et √2 pour le modèle d’Ising, par exemple. Sur la géométrie du ruban, nous montrons que D_N(λ, u) possède les mêmes blocs de Jordan que F_N, son plus haut coefficient de Fourier. Nous étudions la non diagonalisabilité de F_N à l’aide des divergences de certaines composantes de ses vecteurs propres, qui apparaissent aux valeurs critiques de λ. Nous prouvons dans ρ(D_N(λ, u)) l’existence de cellules de Jordan intersectorielles, de rang 2 et couplant des secteurs d, d′ lorsque certaines contraintes sur λ, d, d′ et N sont satisfaites. Pour le modèle de polymères denses critique (β = 0) sur le ruban, les valeurs propres de ρ(D_N(λ, u)) étaient connues, mais les dégénérescences conjecturées. En construisant un isomorphisme entre les modules de connectivités et un sous-espace des modules de spins du modèle XXZ en q = i, nous prouvons cette conjecture. Nous montrons aussi que la restriction de l’hamiltonien de boucles à un secteur donné est diagonalisable et trouvons la forme de Jordan exacte de l’hamiltonien XX, non triviale pour N pair seulement. Enfin nous étudions la structure de Jordan de la matrice de transfert T_N(λ, ν) pour des conditions aux frontières périodiques. La matrice T_N(λ, ν) a des blocs de Jordan intrasectoriels et intersectoriels lorsque λ = πa/b, et a, b ∈ Z×. L’approche par F_N admet une généralisation qui permet de diagnostiquer des cellules intersectorielles dont le rang excède 2 dans certains cas et peut croître indéfiniment avec N. Pour les blocs de Jordan intrasectoriels, nous montrons que les représentations de connectivités sur le cylindre et celles du modèle XXZ sont isomorphes sauf pour certaines valeurs précises de q et du paramètre de torsion v. En utilisant le comportement de la transformation i_N^d dans un voisinage des valeurs critiques (q_c, v_c), nous construisons explicitement des vecteurs généralisés de Jordan de rang 2 et discutons l’existence de blocs de Jordan intrasectoriels de plus haut rang.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We discuss the relation between continuum bound states (CBSs) localized on a defect, and surface states of a finite periodic system. We model an experiment of Capasso et al. [F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, S-N. G. Chu, and A. Y. Cho, Nature (London) 358, 565 (1992)] using the transfer-matrix method. We compute the rate for intrasubband transitions from the ground state to the CBS and derive a sum rule. Finally we show how to improve the confinement of a CBS while keeping the energy fixed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study of simple chaotic maps for non-equilibrium processes in statistical physics has been one of the central themes in the theory of chaotic dynamical systems. Recently, many works have been carried out on deterministic diffusion in spatially extended one-dimensional maps This can be related to real physical systems such as Josephson junctions in the presence of microwave radiation and parametrically driven oscillators. Transport due to chaos is an important problem in Hamiltonian dynamics also. A recent approach is to evaluate the exact diffusion coefficient in terms of the periodic orbits of the system in the form of cycle expansions. But the fact is that the chaotic motion in such spatially extended maps has two complementary aspects- - diffusion and interrnittency. These are related to the time evolution of the probability density function which is approximately Gaussian by central limit theorem. It is noticed that the characteristic function method introduced by Fujisaka and his co-workers is a very powerful tool for analysing both these aspects of chaotic motion. The theory based on characteristic function actually provides a thermodynamic formalism for chaotic systems It can be applied to other types of chaos-induced diffusion also, such as the one arising in statistics of trajectory separation. It was noted that there is a close connection between cycle expansion technique and characteristic function method. It was found that this connection can be exploited to enhance the applicability of the cycle expansion technique. In this way, we found that cycle expansion can be used to analyse the probability density function in chaotic maps. In our research studies we have successfully applied the characteristic function method and cycle expansion technique for analysing some chaotic maps. We introduced in this connection, two classes of chaotic maps with variable shape by generalizing two types of maps well known in literature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper compares statistical technique of paraphrase identification to semantic technique of paraphrase identification. The statistical techniques used for comparison are word set and word-order based methods where as the semantic technique used is the WordNet similarity matrix method described by Stevenson and Fernando in [3].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Low grade and High grade Gliomas are tumors that originate in the glial cells. The main challenge in brain tumor diagnosis is whether a tumor is benign or malignant, primary or metastatic and low or high grade. Based on the patient's MRI, a radiologist could not differentiate whether it is a low grade Glioma or a high grade Glioma. Because both of these are almost visually similar, autopsy confirms the diagnosis of low grade with high-grade and infiltrative features. In this paper, textural description of Grade I and grade III Glioma are extracted using First order statistics and Gray Level Co-occurance Matrix Method (GLCM). Textural features are extracted from 16X16 sub image of the segmented Region of Interest(ROI) .In the proposed method, first order statistical features such as contrast, Intensity , Entropy, Kurtosis and spectral energy and GLCM features extracted were showed promising results. The ranges of these first order statistics and GLCM based features extracted are highly discriminant between grade I and Grade III. In this study which gives statistical textural information of grade I and grade III Glioma which is very useful for further classification and analysis and thus assisting Radiologist in greater extent.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have studied the transport properties of disordered one-dimensional two-band systems. The model includes a narrow d band hybridised with an s band. The Landauer formula was used in the case of a very narrow d band or in the case of short chains. The results were compared with the localisation length of the wavefunctions calculated by the transfer matrix method, which allows the use of very lang chains, and an excellent agreement was obtained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Models of dynamical dark energy unavoidably possess fluctuations in the energy density and pressure of that new component. In this paper we estimate the impact of dark energy fluctuations on the number of galaxy clusters in the Universe using a generalization of the spherical collapse model and the Press-Schechter formalism. The observations we consider are several hypothetical Sunyaev-Zel`dovich and weak lensing (shear maps) cluster surveys, with limiting masses similar to ongoing (SPT, DES) as well as future (LSST, Euclid) surveys. Our statistical analysis is performed in a 7-dimensional cosmological parameter space using the Fisher matrix method. We find that, in some scenarios, the impact of these fluctuations is large enough that their effect could already be detected by existing instruments such as the South Pole Telescope, when priors from other standard cosmological probes are included. We also show how dark energy fluctuations can be a nuisance for constraining cosmological parameters with cluster counts, and point to a degeneracy between the parameter that describes dark energy pressure on small scales (the effective sound speed) and the parameters describing its equation of state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O objetivo do presente trabalho é o estudo do comportamento, em termos de freqüências naturais de estruturas de torres estaiadas, para diversas situações de serviço. Para isso criou-se uma formulação para a determinação dessas freqüências, utilizando o método da matriz de transferência. O procedimento consiste na discretização da estrutura em elementos de barras, massas discretas, molas e amortecedores viscosos, para a representação da estrutura. Com relação aos cabos da torre estaiada, desenvolveu-se uma expressão que nos fornece a rigidez completa dos mesmos, apoiados nos extremos, com amortecimento viscoso e as propriedades físicas e geométricas uniformes. Além disso, os cabos podem ser inclinados e sujeitos à excitação horizontal harmônica no apoio superior. Nesse caso, considera-se uma deformada parabólica do cabo na posição de equilíbrio estático, e por outro lado, os deslocamentos dinâmicos são considerados pequenos. A rigidez do cabo é válida para um ângulo de inclinação que varia de zero (0) a noventa (90) graus. Esse método é aplicável a microcomputadores devido a pouca memória empregada no processamento de dados. Com esse intuito, foi elaborado um programa para microcomputadores de 16 bits, que possibilita o estudo da estrutura da torre sobre o efeito de flexão pura, torção pura ou acoplamento de ambos. Exemplos numéricos de torres estaiadas e do comportamento da rigidez de cabos foram desenvolvidos para as mais diversas situações de cálculo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we investigate the spectra of band structures and transmittance in magnonic quasicrystals that exhibit the so-called deterministic disorders, specifically, magnetic multilayer systems, which are built obeying to the generalized Fibonacci (only golden mean (GM), silver mean (SM), bronze mean (BM), copper mean (CM) and nickel mean (NM) cases) and k-component Fibonacci substitutional sequences. The theoretical model is based on the Heisenberg Hamiltonian in the exchange regime, together with the powerful transfer matrix method, and taking into account the RPA approximation. The magnetic materials considered are simple cubic ferromagnets. Our main interest in this study is to investigate the effects of quasiperiodicity on the physical properties of the systems mentioned by analyzing the behavior of spin wave propagation through the dispersion and transmission spectra of these structures. Among of these results we detach: (i) the fragmentation of the bulk bands, which in the limit of high generations, become a Cantor set, and the presence of the mig-gap frequency in the spin waves transmission, for generalized Fibonacci sequence, and (ii) the strong dependence of the magnonic band gap with respect to the parameters k, which determines the amount of different magnetic materials are present in quasicrystal, and n, which is the generation number of the sequence k-component Fibonacci. In this last case, we have verified that the system presents a magnonic band gap, whose width and frequency region can be controlled by varying k and n. In the exchange regime, the spin waves propagate with frequency of the order of a few tens of terahertz (THz). Therefore, from a experimental and technological point of view, the magnonic quasicrystals can be used as carriers or processors of informations, and the magnon (the quantum spin wave) is responsible for this transport and processing

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The physical properties and the excitations spectrum in oxides and semiconductors materials are presented in this work, whose the first part presents a study on the confinement of optical phonons in artificial systems based on III-V nitrides, grown in periodic and quasiperiodic forms. The second part of this work describes the Ab initio calculations which were carried out to obtain the optoeletronic properties of Calcium Oxide (CaO) and Calcium Carbonate (CaCO3) crystals. For periodic and quasi-periodic superlattices, we present some dynamical properties related to confined optical phonons (bulk and surface), obtained through simple theories, such as the dielectric continuous model, and using techniques such as the transfer-matrix method. The localization character of confined optical phonon modes, the magnitude of the bands in the spectrum and the power laws of these structures are presented as functions of the generation number of sequence. The ab initio calculations have been carried out using the CASTEP software (Cambridge Total Sequential Energy Package), and they were based on ultrasoft-like pseudopotentials and Density Functional Theory (DFT). Two di®erent geometry optimizations have been e®ectuated for CaO crystals and CaCO3 polymorphs, according to LDA (local density approximation) and GGA (generalized gradient approximation) approaches, determining several properties, e. g. lattice parameters, bond length, electrons density, energy band structures, electrons density of states, e®ective masses and optical properties, such as dielectric constant, absorption, re°ectivity, conductivity and refractive index. Those results were employed to investigate the confinement of excitons in spherical Si@CaCO3 and CaCO3@SiO2 quantum dots and in calcium carbonate nanoparticles, and were also employed in investigations of the photoluminescence spectra of CaCO3 crystal

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper deals with approaches for sparse matrix substitutions using vector processing. Many publications have used the W-matrix method to solve the forward/backward substitutions on vector computer. Recently a different approach has been presented using dependency-based substitution algorithm (DBSA). In this paper the focus is on new algorithms able to explore the sparsity of the vectors. The efficiency is tested using linear systems from power systems with 118, 320, 725 and 1729 buses. The tests were performed on a CRAY Y MP2E/232. The speedups for a fast-forward/fast-backward using a 1729-bus system are near 19 and 14 for real and complex arithmetic operations, respectively. When forward/backward is employed the speedups are about 8 and 6 to perform the same simulations.