37 resultados para centriole


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do grau de Doutor em Biologia Celular pelo Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The differentiation of spermatids in Hoplias malabaricus is characterized by chromatin compaction, flagellum development, nuclear rotation, nuclear fossa formation, and excess cytoplasm elimination. In the resulting spermatozoon, the head is round and the nucleus contains chromatin compacted in thick filaments, peripherically arranged, to a central electron-lucent area. The acrosome is absent. The nuclear fossa is eccentric but not pronounced. The proximal centriole penetrates it and is oblique to the flagellum. The long midpiece has several converging elongate vesicles, forming membranous hoops in the initial segment of the flagellum, but has no cytoplasmic channel. The mitochondria are elongate and branched or C-shaped and located around the initial segment of the axoneme. The lateral flagellum does not show lateral projections. The ultrastructural characteristics of H. malabaricus spermatozoa are similar to the Cypriniformes. (C) 2001 the Fisheries Society of the British Isles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spermatozoa ultrastructure was studied in five marines (Paralonchurus brasiliensis, Larimus breviceps, Cynoscion striatus, Micropogonias furnieri, Menticirrhus americanus, Umbrina coroides, Stellifer rastrifer), and one freshwater (Plagioscion squamosissimus) species of Sciaenidae and one species of Polynemidae (Polydactylus virginicus). The investigation revealed that, in all species, spermatozoa display a round head, a nucleus containing highly condensed, filamentous chromatin clusters, no acrosome, a short midpiece with a short cytoplasmic channel, and a flagellum showing the classic axoneme structure (9 + 2) and short irregular lateral fins. In Sciaenidae, the spermatozoa are type II, the flagellar axis is parallel to the nucleus, the lateral nuclear fossa is double arched, the centriolar complex is outside the nuclear fossa, the proximal centriole is anterior and perpendicular to the distal centriole, and no more than ten spherical (marine species) or elongate (freshwater species) mitochondria are observed. Polynemidae spermatozoa are of the intermediate type with the flagellar axis eccentric to the hemi-arc-shaped nucleus, and exhibit no nuclear fossa, the centriolar complex close to the upper nuclear end, the proximal centriole lateral and oblique to the distal centriole, and one large ring-shaped mitocondrion. The data available show that no characteristic is exclusively found in the spermatozoa of members of the Sciaenidae family when compared to other Percoidei with type II spermatozoa. However, three characteristics were exclusively found in Polynemidae: (1) the hemi-arched nucleus; the positioning of the centrioles; and (2) the ring-shaped mitocondrion. The interrelationships between Sciaenidae and Polynemidae as well as between these two families and other Percoidei are herein discussed. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spermiogenesis and spermatozoal structure were studied in Cichla intermedia, a primitive species of Neotropical cichlids. The analysis shows that spermiogenesis is characterized by chromatin compaction, flagellum development, nuclear rotation, nuclear fossa formation and residual cytoplasm elimination. In the spermatozoa, the head is round, the nucleus contains highly condensed filamentous clusters of chromatin and an acrosome is absent. The nuclear fossa is slightly eccentric and shows a projection that penetrates into the nuclear outline. The proximal centriole is located in the initial segment of the nuclear fossa. The midpiece and the cytoplasmic channel are long. The mitochondria, about 10 in number, are round or slightly elongated, disposed in two layers around the initial segment of the flagellum. The flagellum has a classical 9 + 2 axoneme and two lateral fins. The data available show that no characteristics of spermiogenesis or spermatozoa are exclusively found in members of the suborder Labroidei. However, three characteristics seem to be exclusively observed in Cichlidae: (1) compact filamentous clusters of chromatin; (2) slightly eccentric nuclear fossa; and, (3) number of mitochondria. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various types of nuages and lamellae anulata can be found during Dermatobia hominis spermatogenesis. In spermatogonia, the nuages occur as granules juxtaposed to the cytoplasmic face of the nuclear envelope or as cytoplasmic granules similar toglycogen granules. In spermatocytes, in addition to the nuages, dense spherical bodies of approximately 1.0 µm in diameter are also observed. In the spermatids the nuages can be of the following types: perinuclear granules, spherical granules with diameters varying in length from 0.5 to 1.0 µm, granules similar to glycogen granules, granules with variable diameters which accumulate at the flagellum base forming the centriole adjunct, or remain in the cytoplasm. Nuages can also be observed in these cellular types as dense masses, without a definite outline and are common to animal germinal cells in general. The lamellae anulata on the other hand, are observed only in spermatocytes I and in early spermatids, being always immersed in electron-dense material of indefinite outline. In spermatids, the lamellae anulata are close to the nuclear envelope suggesting, in spite of opposing opinions, that these cells are envolved in the synthesis and transport of material from the nucleus to the cytoplasm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this present study was observed that the spermatids underwent morphological differentiation and modifications, which primarily comprised nuclear elongation, during the process of spermiogenesis in the domestic duck. The acrosome was formed and the flagellum developed concomitantly with nuclear modifications. Thus, various modifications could be observed during this process, especially changes in the distribution of cytoplasmic organelles. Long cisternae of the rough endoplasmic reticulum present in the spermatid cytoplasm dissociated into vesicles and the distal centriole initiated the development of the flagellum in the cellular portion opposite to the acrosome. The ultrastructure of the spermatids of the domestic duck did not show the characteristic development of pre-acrosomal granules, but the acrosomal granule could be directly visualized in this species. © 2005 Blackwell Verlag.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spermiogenesis and sperm ultrastructure from 21 species of Moenkhausia and others related genera are described. To evaluate the phylogenetic signals, 18 unordered characters were utilized in implied weighting analysis through the program TNT 1.1. Four variations of spermiogenesis were found. In the earliest spermatids, the nucleus can be positioned lateral, eccentric, strongly eccentric or nearly medial in relation to the distal centriole. The nuclear rotation can be present or absent. These spermiogenesis processes are related or intermediate to Type I and Type III. Taking into account the degrees of nuclear rotation during the spermiogenesis and other characteristics, distinct forms of spermatozoa are observed among the species analyzed. The phylogenetic analysis yielded a single most parsimonious tree with fit value 2.70000 and the topology obtained founds Moenkhausia as non-monophyletic. However, some hypothesis of relationships previously proposed viz the clade 20, which contains the type species Moenkhausia xinguensis, is recovered herein. This clade is supported by five synapomorphies, and it allows the supposition that these species constitute a monophyletic group. The whole topology is presented and discussed. © 2012 The Authors. Acta Zoologica © 2012 The Royal Swedish Academy of Sciences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intraflagellar transport (IFT) is required for the assembly and maintenance of cilia. In this study we analyzed the subcellular localization of IFT proteins in retinal cells by correlative high-resolution immunofluorescence and immunoelectron microscopy. The rod photoreceptor cell was used as a model system to analyze protein distribution in cilia. To date the expression of IFT proteins has been described in the ciliary region without deciphering the precise spatial and temporal subcellular localization of IFT proteins, which was the focus of my work. rnThe establishment of the pre-embedding immunoelectron method was an important first step for the present doctoral thesis. Results of this work reveal the differential localization of IFT20, IFT52, IFT57, IFT88, IFT140 in sub-ciliary compartments and also their presence in non-ciliary compartments of retinal photoreceptor cells. Furthermore, the localization of IFT20, IFT52 and IFT57 in dendritic processes of non-ciliated neurons indicates that IFT protein complexes also operate in non-ciliated cells and may participate in intracellular vesicle trafficking in eukaryotic cells in general.rnIn addition, we have investigated the involvement of IFT proteins in the ciliogenesis of vertebrate photoreceptor cilia. Electron microscopy analyses revealed six morphologically distinct stages. The first stages are characterized by electron dense centriolar satellites and a ciliary vesicle, while the formation of a ciliary shaft and of the light sensitive outer segment disks are features of the later stages. IFT proteins were expressed during all stages of photoreceptor cell development and found to be associated with the ciliary apparatus. In addition to the centriole and basal body IFT proteins are present in the photoreceptor cytoplasm, associated with centriolar satellites, post-Golgi vesicles and with the ciliary vesicle. Therewith the data provide an evidence for the involvement of IFT proteins during ciliogenesis, including the formation of the ciliary vesicle and the elongation of the primary cilium of photoreceptor cells. Moreover, the cytoplasmic localization of IFT proteins in the absence of a ciliary shaft in early stages of ciliogenesis indicates roles of IFT proteins beyond their well-established function for IFT in mature cilia and flagella. rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Centrioles are cylindrical, ninefold symmetrical structures with peripheral triplet microtubules strictly required to template cilia and flagella. The highly conserved protein SAS-6 constitutes the center of the cartwheel assembly that scaffolds centrioles early in their biogenesis. We determined the x-ray structure of the amino-terminal domain of SAS-6 from zebrafish, and we show that recombinant SAS-6 self-associates in vitro into assemblies that resemble cartwheel centers. Point mutations are consistent with the notion that centriole formation in vivo depends on the interactions that define the self-assemblies observed here. Thus, these interactions are probably essential to the structural organization of cartwheel centers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural protein 4.1 was first characterized as an important 80-kDa protein in the mature red cell membrane skeleton. It is now known to be a member of a family of protein isoforms detected at diverse intracellular sites in many nucleated mammalian cells. We recently reported that protein 4.1 isoforms are present at interphase in nuclear matrix and are rearranged during the cell cycle. Here we report that protein 4.1 epitopes are present in centrosomes of human and murine cells and are detected by using affinity-purified antibodies specific for 80-kDa red cell 4.1 and for 4.1 peptides. Immunofluorescence, by both conventional and confocal microscopy, showed that protein 4.1 epitopes localized in the pericentriolar region. Protein 4.1 epitopes remained in centrosomes after extraction of cells with detergent, salt, and DNase. Higher resolution electron microscopy of detergent-extracted cell whole mounts showed centrosomal protein 4.1 epitopes distributed along centriolar cylinders and on pericentriolar fibers, at least some of which constitute the filamentous network surrounding each centriole. Double-label electron microscopy showed that protein 4.1 epitopes were predominately localized in regions also occupied by epitopes for centrosome-specific autoimmune serum 5051 but were not found on microtubules. Our results suggest that protein 4.1 is an integral component of centrosome structure, in which it may play an important role in centrosome function during cell division and organization of cellular architecture.