999 resultados para censoring data


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data augmentation is a powerful technique for estimating models with latent or missing data, but applications in agricultural economics have thus far been few. This paper showcases the technique in an application to data on milk market participation in the Ethiopian highlands. There, a key impediment to economic development is an apparently low rate of market participation. Consequently, economic interest centers on the “locations” of nonparticipants in relation to the market and their “reservation values” across covariates. These quantities are of policy interest because they provide measures of the additional inputs necessary in order for nonparticipants to enter the market. One quantity of primary interest is the minimum amount of surplus milk (the “minimum efficient scale of operations”) that the household must acquire before market participation becomes feasible. We estimate this quantity through routine application of data augmentation and Gibbs sampling applied to a random-censored Tobit regression. Incorporating random censoring affects markedly the marketable-surplus requirements of the household, but only slightly the covariates requirements estimates and, generally, leads to more plausible policy estimates than the estimates obtained from the zero-censored formulation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of bivariate distributions plays a fundamental role in survival and reliability studies. In this paper, we consider a location scale model for bivariate survival times based on the proposal of a copula to model the dependence of bivariate survival data. For the proposed model, we consider inferential procedures based on maximum likelihood. Gains in efficiency from bivariate models are also examined in the censored data setting. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and compared to the performance of the bivariate regression model for matched paired survival data. Sensitivity analysis methods such as local and total influence are presented and derived under three perturbation schemes. The martingale marginal and the deviance marginal residual measures are used to check the adequacy of the model. Furthermore, we propose a new measure which we call modified deviance component residual. The methodology in the paper is illustrated on a lifetime data set for kidney patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In interval-censored survival data, the event of interest is not observed exactly but is only known to occur within some time interval. Such data appear very frequently. In this paper, we are concerned only with parametric forms, and so a location-scale regression model based on the exponentiated Weibull distribution is proposed for modeling interval-censored data. We show that the proposed log-exponentiated Weibull regression model for interval-censored data represents a parametric family of models that include other regression models that are broadly used in lifetime data analysis. Assuming the use of interval-censored data, we employ a frequentist analysis, a jackknife estimator, a parametric bootstrap and a Bayesian analysis for the parameters of the proposed model. We derive the appropriate matrices for assessing local influences on the parameter estimates under different perturbation schemes and present some ways to assess global influences. Furthermore, for different parameter settings, sample sizes and censoring percentages, various simulations are performed; in addition, the empirical distribution of some modified residuals are displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended to a modified deviance residual in log-exponentiated Weibull regression models for interval-censored data. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In survival analysis applications, the failure rate function may frequently present a unimodal shape. In such case, the log-normal or log-logistic distributions are used. In this paper, we shall be concerned only with parametric forms, so a location-scale regression model based on the Burr XII distribution is proposed for modeling data with a unimodal failure rate function as an alternative to the log-logistic regression model. Assuming censored data, we consider a classic analysis, a Bayesian analysis and a jackknife estimator for the parameters of the proposed model. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and compared to the performance of the log-logistic and log-Burr XII regression models. Besides, we use sensitivity analysis to detect influential or outlying observations, and residual analysis is used to check the assumptions in the model. Finally, we analyze a real data set under log-Buff XII regression models. (C) 2008 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we derive score test statistics to discriminate between proportional hazards and proportional odds models for grouped survival data. These models are embedded within a power family transformation in order to obtain the score tests. In simple cases, some small-sample results are obtained for the score statistics using Monte Carlo simulations. Score statistics have distributions well approximated by the chi-squared distribution. Real examples illustrate the proposed tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, proportional hazards and logistic models for grouped survival data were extended to incorporate time-dependent covariates. The extension was motivated by a forestry experiment designed to compare five different water stresses in Eucalyptus grandis seedlings. The response was the seedling lifetime. The data set was grouped since there were just three occasions in which the seedlings was visited by the researcher. In each of these occasions also the shoot height was measured and therefore it is a time-dependent covariate. Both extended models were used in this example, and the results were very similar.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work develops a new methodology in order to discriminate models for interval-censored data based on bootstrap residual simulation by observing the deviance difference from one model in relation to another, according to Hinde (1992). Generally, this sort of data can generate a large number of tied observations and, in this case, survival time can be regarded as discrete. Therefore, the Cox proportional hazards model for grouped data (Prentice & Gloeckler, 1978) and the logistic model (Lawless, 1982) can befitted by means of generalized linear models. Whitehead (1989) considered censoring to be an indicative variable with a binomial distribution and fitted the Cox proportional hazards model using complementary log-log as a link function. In addition, a logistic model can be fitted using logit as a link function. The proposed methodology arises as an alternative to the score tests developed by Colosimo et al. (2000), where such models can be obtained for discrete binary data as particular cases from the Aranda-Ordaz distribution asymmetric family. These tests are thus developed with a basis on link functions to generate such a fit. The example that motivates this study was the dataset from an experiment carried out on a flax cultivar planted on four substrata susceptible to the pathogen Fusarium oxysoprum. The response variable, which is the time until blighting, was observed in intervals during 52 days. The results were compared with the model fit and the AIC values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evaluations of measurement invariance provide essential construct validity evidence. However, the quality of such evidence is partly dependent upon the validity of the resulting statistical conclusions. The presence of Type I or Type II errors can render measurement invariance conclusions meaningless. The purpose of this study was to determine the effects of categorization and censoring on the behavior of the chi-square/likelihood ratio test statistic and two alternative fit indices (CFI and RMSEA) under the context of evaluating measurement invariance. Monte Carlo simulation was used to examine Type I error and power rates for the (a) overall test statistic/fit indices, and (b) change in test statistic/fit indices. Data were generated according to a multiple-group single-factor CFA model across 40 conditions that varied by sample size, strength of item factor loadings, and categorization thresholds. Seven different combinations of model estimators (ML, Yuan-Bentler scaled ML, and WLSMV) and specified measurement scales (continuous, censored, and categorical) were used to analyze each of the simulation conditions. As hypothesized, non-normality increased Type I error rates for the continuous scale of measurement and did not affect error rates for the categorical scale of measurement. Maximum likelihood estimation combined with a categorical scale of measurement resulted in more correct statistical conclusions than the other analysis combinations. For the continuous and censored scales of measurement, the Yuan-Bentler scaled ML resulted in more correct conclusions than normal-theory ML. The censored measurement scale did not offer any advantages over the continuous measurement scale. Comparing across fit statistics and indices, the chi-square-based test statistics were preferred over the alternative fit indices, and ΔRMSEA was preferred over ΔCFI. Results from this study should be used to inform the modeling decisions of applied researchers. However, no single analysis combination can be recommended for all situations. Therefore, it is essential that researchers consider the context and purpose of their analyses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In biostatistical applications interest often focuses on the estimation of the distribution of a time-until-event variable T. If one observes whether or not T exceeds an observed monitoring time at a random number of monitoring times, then the data structure is called interval censored data. We extend this data structure by allowing the presence of a possibly time-dependent covariate process that is observed until end of follow up. If one only assumes that the censoring mechanism satisfies coarsening at random, then, by the curve of dimensionality, typically no regular estimators will exist. To fight the curse of dimensionality we follow the approach of Robins and Rotnitzky (1992) by modeling parameters of the censoring mechanism. We model the right-censoring mechanism by modeling the hazard of the follow up time, conditional on T and the covariate process. For the monitoring mechanism we avoid modeling the joint distribution of the monitoring times by only modeling a univariate hazard of the pooled monitoring times, conditional on the follow up time, T, and the covariates process, which can be estimated by treating the pooled sample of monitoring times as i.i.d. In particular, it is assumed that the monitoring times and the right-censoring times only depend on T through the observed covariate process. We introduce inverse probability of censoring weighted (IPCW) estimator of the distribution of T and of smooth functionals thereof which are guaranteed to be consistent and asymptotically normal if we have available correctly specified semiparametric models for the two hazards of the censoring process. Furthermore, given such correctly specified models for these hazards of the censoring process, we propose a one-step estimator which will improve on the IPCW estimator if we correctly specify a lower-dimensional working model for the conditional distribution of T, given the covariate process, that remains consistent and asymptotically normal if this latter working model is misspecified. It is shown that the one-step estimator is efficient if each subject is at most monitored once and the working model contains the truth. In general, it is shown that the one-step estimator optimally uses the surrogate information if the working model contains the truth. It is not optimal in using the interval information provided by the current status indicators at the monitoring times, but simulations in Peterson, van der Laan (1997) show that the efficiency loss is small.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In biostatistical applications, interest often focuses on the estimation of the distribution of time T between two consecutive events. If the initial event time is observed and the subsequent event time is only known to be larger or smaller than an observed monitoring time, then the data is described by the well known singly-censored current status model, also known as interval censored data, case I. We extend this current status model by allowing the presence of a time-dependent process, which is partly observed and allowing C to depend on T through the observed part of this time-dependent process. Because of the high dimension of the covariate process, no globally efficient estimators exist with a good practical performance at moderate sample sizes. We follow the approach of Robins and Rotnitzky (1992) by modeling the censoring variable, given the time-variable and the covariate-process, i.e., the missingness process, under the restriction that it satisfied coarsening at random. We propose a generalization of the simple current status estimator of the distribution of T and of smooth functionals of the distribution of T, which is based on an estimate of the missingness. In this estimator the covariates enter only through the estimate of the missingness process. Due to the coarsening at random assumption, the estimator has the interesting property that if we estimate the missingness process more nonparametrically, then we improve its efficiency. We show that by local estimation of an optimal model or optimal function of the covariates for the missingness process, the generalized current status estimator for smooth functionals become locally efficient; meaning it is efficient if the right model or covariate is consistently estimated and it is consistent and asymptotically normal in general. Estimation of the optimal model requires estimation of the conditional distribution of T, given the covariates. Any (prior) knowledge of this conditional distribution can be used at this stage without any risk of losing root-n consistency. We also propose locally efficient one step estimators. Finally, we show some simulation results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In many applications the observed data can be viewed as a censored high dimensional full data random variable X. By the curve of dimensionality it is typically not possible to construct estimators that are asymptotically efficient at every probability distribution in a semiparametric censored data model of such a high dimensional censored data structure. We provide a general method for construction of one-step estimators that are efficient at a chosen submodel of the full-data model, are still well behaved off this submodel and can be chosen to always improve on a given initial estimator. These one-step estimators rely on good estimators of the censoring mechanism and thus will require a parametric or semiparametric model for the censoring mechanism. We present a general theorem that provides a template for proving the desired asymptotic results. We illustrate the general one-step estimation methods by constructing locally efficient one-step estimators of marginal distributions and regression parameters with right-censored data, current status data and bivariate right-censored data, in all models allowing the presence of time-dependent covariates. The conditions of the asymptotics theorem are rigorously verified in one of the examples and the key condition of the general theorem is verified for all examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider nonparametric missing data models for which the censoring mechanism satisfies coarsening at random and which allow complete observations on the variable X of interest. W show that beyond some empirical process conditions the only essential condition for efficiency of an NPMLE of the distribution of X is that the regions associated with incomplete observations on X contain enough complete observations. This is heuristically explained by describing the EM-algorithm. We provide identifiably of the self-consistency equation and efficiency of the NPMLE in order to make this statement rigorous. The usual kind of differentiability conditions in the proof are avoided by using an identity which holds for the NPMLE of linear parameters in convex models. We provide a bivariate censoring application in which the condition and hence the NPMLE fails, but where other estimators, not based on the NPMLE principle, are highly inefficient. It is shown how to slightly reduce the data so that the conditions hold for the reduced data. The conditions are verified for the univariate censoring, double censored, and Ibragimov-Has'minski models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies of chronic life-threatening diseases often involve both mortality and morbidity. In observational studies, the data may also be subject to administrative left truncation and right censoring. Since mortality and morbidity may be correlated and mortality may censor morbidity, the Lynden-Bell estimator for left truncated and right censored data may be biased for estimating the marginal survival function of the non-terminal event. We propose a semiparametric estimator for this survival function based on a joint model for the two time-to-event variables, which utilizes the gamma frailty specification in the region of the observable data. Firstly, we develop a novel estimator for the gamma frailty parameter under left truncation. Using this estimator, we then derive a closed form estimator for the marginal distribution of the non-terminal event. The large sample properties of the estimators are established via asymptotic theory. The methodology performs well with moderate sample sizes, both in simulations and in an analysis of data from a diabetes registry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces a novel approach to making inference about the regression parameters in the accelerated failure time (AFT) model for current status and interval censored data. The estimator is constructed by inverting a Wald type test for testing a null proportional hazards model. A numerically efficient Markov chain Monte Carlo (MCMC) based resampling method is proposed to simultaneously obtain the point estimator and a consistent estimator of its variance-covariance matrix. We illustrate our approach with interval censored data sets from two clinical studies. Extensive numerical studies are conducted to evaluate the finite sample performance of the new estimators.