838 resultados para causal reasoning


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabajo se inscribe en uno de los grandes campos de los estudios organizacionales: la estrategia. La perspectiva clásica en este campo promovió la idea de que proyectarse hacia el futuro implica diseñar un plan (una serie de acciones deliberadas). Avances posteriores mostraron que la estrategia podía ser comprendida de otras formas. Sin embargo, la evolución del campo privilegió en alguna medida la mirada clásica estableciendo, por ejemplo, múltiples modelos para ‘formular’ una estrategia, pero dejando en segundo lugar la manera en la que esta puede ‘emerger’. El propósito de esta investigación es, entonces, aportar al actual nivel de comprensión respecto a las estrategias emergentes en las organizaciones. Para hacerlo, se consideró un concepto opuesto —aunque complementario— al de ‘planeación’ y, de hecho, muy cercano en su naturaleza a ese tipo de estrategias: la improvisación. Dado que este se ha nutrido de valiosos aportes del mundo de la música, se acudió al saber propio de este dominio, recurriendo al uso de ‘la metáfora’ como recurso teórico para entenderlo y alcanzar el objetivo propuesto. Los resultados muestran que 1) las estrategias deliberadas y las emergentes coexisten y se complementan, 2) la improvisación está siempre presente en el contexto organizacional, 3) existe una mayor intensidad de la improvisación en el ‘como’ de la estrategia que en el ‘qué’ y, en oposición a la idea convencional al respecto, 4) se requiere cierta preparación para poder improvisar de manera adecuada.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis presents a theory of human-like reasoning in the general domain of designed physical systems, and in particular, electronic circuits. One aspect of the theory, causal analysis, describes how the behavior of individual components can be combined to explain the behavior of composite systems. Another aspect of the theory, teleological analysis, describes how the notion that the system has a purpose can be used to aid this causal analysis. The theory is implemented as a computer program, which, given a circuit topology, can construct by qualitative causal analysis a mechanism graph describing the functional topology of the system. This functional topology is then parsed by a grammar for common circuit functions. Ambiguities are introduced into the analysis by the approximate qualitative nature of the analysis. For example, there are often several possible mechanisms which might describe the circuit's function. These are disambiguated by teleological analysis. The requirement that each component be assigned an appropriate purpose in the functional topology imposes a severe constraint which eliminates all the ambiguities. Since both analyses are based on heuristics, the chosen mechanism is a rationalization of how the circuit functions, and does not guarantee that the circuit actually does function. This type of coarse understanding of circuits is useful for analysis, design and troubleshooting.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of additivity pretraining on blocking has been taken as evidence for a reasoning account of human and animal causal learning. If inferential reasoning underpins this effect, then developmental differences in the magnitude of this effect in children would be expected. Experiment 1 examined cue competition effects in children's (4- to 5-year-olds and 6- to 7-year-olds) causal learning using a new paradigm analogous to the food allergy task used in studies of human adult causal learning. Blocking was stronger in the older than the younger children, and additivity pretraining only affected blocking in the older group. Unovershadowing was not affected by age or by pretraining. In experiment 2, levels of blocking were found to be correlated with the ability to answer questions that required children to reason about additivity. Our results support an inferential reasoning explanation of cue competition effects. (c) 2012 APA, all rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A sample of 99 children completed a causal learning task that was an analogue of the food allergy paradigm used with adults. The cue competition effects of blocking and unovershadowing were assessed under forward and backward presentation conditions. Children also answered questions probing their ability to make the inference posited to be necessary for blocking by a reasoning account of cue competition. For the first time, children's working memory and general verbal ability were also measured alongside their causal learning. The magnitude of blocking and unovershadowing effects increased with age. However, analyses showed that the best predictor of both blocking and unovershadowing effects was children's performance on the reasoning questions. The magnitude of the blocking effect was also predicted by children's working memory abilities. These findings provide new evidence that cue competition effects such as blocking are underpinned by effortful reasoning processes. 

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Base rate neglect on the mammography problem can be overcome by explicitly presenting a causal basis for the typically vague false-positive statistic. One account of this causal facilitation effect is that people make probabilistic judgements over intuitive causal models parameterized with the evidence in the problem. Poorly defined or difficult-to-map evidence interferes with this process, leading to errors in statistical reasoning. To assess whether the construction of parameterized causal representations is an intuitive or deliberative process, in Experiment 1 we combined a secondary load paradigm with manipulations of the presence or absence of an alternative cause in typical statistical reasoning problems. We found limited effects of a secondary load, no evidence that information about an alternative cause improves statistical reasoning, but some evidence that it reduces base rate neglect errors. In Experiments 2 and 3 where we did not impose a load, we observed causal facilitation effects. The amount of Bayesian responding in the causal conditions was impervious to the presence of a load (Experiment 1) and to the precise statistical information that was presented (Experiment 3). However, we found less Bayesian responding in the causal condition than previously reported. We conclude with a discussion of the implications of our findings and the suggestion that there may be population effects in the accuracy of statistical reasoning.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

People often struggle when making Bayesian probabilistic estimates on the basis of competing sources of statistical evidence. Recently, Krynski and Tenenbaum (Journal of Experimental Psychology: General, 136, 430–450, 2007) proposed that a causal Bayesian framework accounts for peoples’ errors in Bayesian reasoning and showed that, by clarifying the causal relations among the pieces of evidence, judgments on a classic statistical reasoning problem could be significantly improved. We aimed to understand whose statistical reasoning is facilitated by the causal structure intervention. In Experiment 1, although we observed causal facilitation effects overall, the effect was confined to participants high in numeracy. We did not find an overall facilitation effect in Experiment 2 but did replicate the earlier interaction between numerical ability and the presence or absence of causal content. This effect held when we controlled for general cognitive ability and thinking disposition. Our results suggest that clarifying causal structure facilitates Bayesian judgments, but only for participants with sufficient understanding of basic concepts in probability and statistics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In attempting to build intelligent litigation support tools, we have moved beyond first generation, production rule legal expert systems. Our work integrates rule based and case based reasoning with intelligent information retrieval. When using the case based reasoning methodology, or in our case the specialisation of case based retrieval, we need to be aware of how to retrieve relevant experience. Our research, in the legal domain, specifies an approach to the retrieval problem which relies heavily on an extended object oriented/rule based system architecture that is supplemented with causal background information. We use a distributed agent architecture to help support the reasoning process of lawyers. Our approach to integrating rule based reasoning, case based reasoning and case based retrieval is contrasted to the CABARET and PROLEXS architectures which rely on a centralised blackboard architecture. We discuss in detail how our various cooperating agents interact, and provide examples of the system at work. The IKBALS system uses a specialised induction algorithm to induce rules from cases. These rules are then used as indices during the case based retrieval process. Because we aim to build legal support tools which can be modified to suit various domains rather than single purpose legal expert systems, we focus on principles behind developing legal knowledge based systems. The original domain chosen was theAccident Compensation Act 1989 (Victoria, Australia), which relates to the provision of benefits for employees injured at work. For various reasons, which are indicated in the paper, we changed our domain to that ofCredit Act 1984 (Victoria, Australia). This Act regulates the provision of loans by financial institutions. The rule based part of our system which provides advice on the Credit Act has been commercially developed in conjunction with a legal firm. We indicate how this work has lead to the development of a methodology for constructing rule based legal knowledge based systems. We explain the process of integrating this existing commercial rule based system with the case base reasoning and retrieval architecture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we give a method for probabilistic assignment to the Realistic Abductive Reasoning Model, The knowledge is assumed to be represented in the form of causal chaining, namely, hyper-bipartite network. Hyper-bipartite network is the most generalized form of knowledge representation for which, so far, there has been no way of assigning probability to the explanations, First, the inference mechanism using realistic abductive reasoning model is briefly described and then probability is assigned to each of the explanations so as to pick up the explanations in the decreasing order of plausibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In two experiments we tested the prediction derived from Tversky and Kahneman's (1983) work on the causal conjunction fallacy that the strength of the causal connection between constituent events directly affects the magnitude of the causal conjunction fallacy. We also explored whether any effects of perceived causal strength were due to graded output from heuristic Type 1 reasoning processes or the result of analytic Type 2 reasoning processes. As predicted, Experiment 1 demonstrated that fallacy rates were higher for strongly than for weakly related conjunctions. Weakly related conjunctions in turn attracted higher rates of fallacious responding than did unrelated conjunctions. Experiment 2 showed that a concurrent memory load increased rates of fallacious responding for strongly related but not for weakly related conjunctions. We interpret these results as showing that manipulations of the strength of the perceived causal relationship between the conjuncts result in graded output from heuristic reasoning process and that additional mental resources are required to suppress strong heuristic output.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three experiments examined whether children and adults would use temporal information as a cue to the causal structure of a three-variable system, and also whether their judgements about the effects of interventions on the system would be affected by the temporal properties of the event sequence. Participants were shown a system in which two events B and C occurred either simultaneously (synchronous condition) or in a temporal sequence (sequential condition) following an initial event A. The causal judgements of adults and 6-7-year-olds differed between the conditions, but this was not the case for 4-year-olds' judgements. However, unlike those of adults, 6-7-year-olds' intervention judgements were not affected by condition, and causal and intervention judgements were not reliably consistent in this age group. The findings support the claim that temporal information provides an important cue to causal structure, at least in older children. However, they raise important issues about the relationship between causal and intervention judgements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe evidence that certain inductive phenomena are associated with IQ, that different inductive phenomena emerge at different ages, and that the effects of causal knowledge on induction are decreased under conditions of memory load. On the basis of this evidence we argue that there is more to inductive reasoning than semantic cognition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

According to a higher order reasoning account, inferential reasoning processes underpin the widely observed cue competition effect of blocking in causal learning. The inference required for blocking has been described as modus tollens (if p then q, not q therefore not p). Young children are known to have difficulties with this type of inference, but research with adults suggests that this inference is easier if participants think counterfactually. In this study, 100 children (51 five-year-olds and 49 six- to seven-year-olds) were assigned to two types of pretraining groups. The counterfactual group observed demonstrations of cues paired with outcomes and answered questions about what the outcome would have been if the causal status of cues had been different, whereas the factual group answered factual questions about the same demonstrations. Children then completed a causal learning task. Counterfactual pretraining enhanced levels of blocking as well as modus tollens reasoning but only for the younger children. These findings provide new evidence for an important role for inferential reasoning in causal learning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Across a range of domains in psychology different theories assume different mental representations of knowledge. For example, in the literature on category-based inductive reasoning, certain theories (e.g., Rogers & McClelland, 2004; Sloutsky & Fisher, 2008) assume that the knowledge upon which inductive inferences are based is associative, whereas others (e.g., Heit & Rubinstein, 1994; Kemp & Tenenbaum, 2009; Osherson, Smith, Wilkie, López, & Shafir, 1990) assume that knowledge is structured. In this article we investigate whether associative and structured knowledge underlie inductive reasoning to different degrees under different processing conditions. We develop a measure of knowledge about the degree of association between categories and show that it dissociates from measures of structured knowledge. In Experiment 1 participants rated the strength of inductive arguments whose categories were either taxonomically or causally related. A measure of associative strength predicted reasoning when people had to respond fast, whereas causal and taxonomic knowledge explained inference strength when people responded slowly. In Experiment 2, we also manipulated whether the causal link between the categories was predictive or diagnostic. Participants preferred predictive to diagnostic arguments except when they responded under cognitive load. In Experiment 3, using an open-ended induction paradigm, people generated and evaluated their own conclusion categories. Inductive strength was predicted by associative strength under heavy cognitive load, whereas an index of structured knowledge was more predictive of inductive strength under minimal cognitive load. Together these results suggest that associative and structured models of reasoning apply best under different processing conditions and that the application of structured knowledge in reasoning is often effortful.