932 resultados para case-based design
Resumo:
Very few empirically validated interventions for improving metacognitive skills (i.e., self-awareness and self-regulation) and functional outcomes have been reported. This single-case experimental study presents JM, a 36-year-old man with a very severe traumatic brain injury (TBI) who demonstrated long-term awareness deficits. Treatment at four years post-injury involved a metacognitive contextual intervention based on a conceptualization of neuro-cognitive, psychological, and socio-environmental factors contributing to his awareness deficits. The 16-week intervention targeted error awareness and self-correction in two real life settings: (a) cooking at home: and (b) volunteer work. Outcome measures included behavioral observation of error behavior and standardized awareness measures. Relative to baseline performance in the cooking setting, JM demonstrated a 44% reduction in error frequency and increased self-correction. Although no spontaneous generalization was evident in the volunteer work setting, specific training in this environment led to a 39% decrease in errors. JM later gained paid employment and received brief metacognitive training in his work environment. JM's global self-knowledge of deficits assessed by self-report was unchanged after the program. Overall, the study provides preliminary support for a metacognitive contextual approach to improve error awareness and functional Outcome in real life settings.
Resumo:
The paper deals with a problem of intelligent system’s design for complex environments. There is discussed a possibility to integrate several technologies into one basic structure that could form a kernel of an autonomous intelligent robotic system. One alternative structure is proposed in order to form a basis of an intelligent system that would be able to operate in complex environments. The proposed structure is very flexible because of features that allow adapting via learning and adjustment of the used knowledge. Therefore, the proposed structure may be used in environments with stochastic features such as hardly predictable events or elements. The basic elements of the proposed structure have found their implementation in software system and experimental robotic system. The software system as well as the robotic system has been used for experimentation in order to validate the proposed structure - its functionality, flexibility and reliability. Both of them are presented in the paper. The basic features of each system are presented as well. The most important results of experiments are outlined and discussed at the end of the paper. Some possible directions of further research are also sketched at the end of the paper.
Resumo:
A Case-Based Reasoning (CBR) tool is software that can be used to develop several applications that require cased-based reasoning methodology. CBR shells are kind of application generators with graphical user interface. They can be used by non-programmer users but the extension or integration of new components in these tools is not possible. In this paper we analyzed three CBR object-oriented framework development environments CBR*Tools, CAT-CBR, and JColibri. These frameworks work as open software development environment and facilitate the reuse of their design as well as implementations.
Resumo:
There may be advantages to be gained by combining Case-Based Reasoning (CBR) techniques with numerical models. In this paper we consider how CBR can be used as a flexible query engine to improve the usability of numerical models. Particularly they can help to solve inverse and mixed problems, and to solve constraint problems. We discuss this idea with reference to the illustrative example of a pneumatic conveyor. We describe a model of the problem of particle degradation in such a conveyor, and the problems faced by design engineers. The solution of these problems requires a system that allows iterative sharing of control between user, CBR system, and numerical model. This multi-initiative interaction is illustrated for the pneumatic conveyor by means of Unified Modeling Language (UML) collaboration and sequence diagrams. We show approaches to the solution of these problems via a CBR tool.
Stability and simulation-based design of steel scaffolding without using the effective length method
Resumo:
It is proposed a new approach based on a methodology, assisted by a tool, to create new products in the automobile industry based on previous defined processes and experiences inspired on a set of best practices or principles: it is based on high-level models or specifications; it is component-based architecture centric; it is based on generative programming techniques. This approach follows in essence the MDA (Model Driven Architecture) philosophy with some specific characteristics. We propose a repository that keeps related information, such as models, applications, design information, generated artifacts and even information concerning the development process itself (e.g., generation steps, tests and integration milestones). Generically, this methodology receives the users' requirements to a new product (e.g., functional, non-functional, product specification) as its main inputs and produces a set of artifacts (e.g., design parts, process validation output) as its main output, that will be integrated in the engineer design tool (e.g. CAD system) facilitating the work.
Resumo:
Metaheuristics performance is highly dependent of the respective parameters which need to be tuned. Parameter tuning may allow a larger flexibility and robustness but requires a careful initialization. The process of defining which parameters setting should be used is not obvious. The values for parameters depend mainly on the problem, the instance to be solved, the search time available to spend in solving the problem, and the required quality of solution. This paper presents a learning module proposal for an autonomous parameterization of Metaheuristics, integrated on a Multi-Agent System for the resolution of Dynamic Scheduling problems. The proposed learning module is inspired on Autonomic Computing Self-Optimization concept, defining that systems must continuously and proactively improve their performance. For the learning implementation it is used Case-based Reasoning, which uses previous similar data to solve new cases. In the use of Case-based Reasoning it is assumed that similar cases have similar solutions. After a literature review on topics used, both AutoDynAgents system and Self-Optimization module are described. Finally, a computational study is presented where the proposed module is evaluated, obtained results are compared with previous ones, some conclusions are reached, and some future work is referred. It is expected that this proposal can be a great contribution for the self-parameterization of Metaheuristics and for the resolution of scheduling problems on dynamic environments.
Resumo:
A novel agent-based approach to Meta-Heuristics self-configuration is proposed in this work. Meta-heuristics are examples of algorithms where parameters need to be set up as efficient as possible in order to unsure its performance. This paper presents a learning module for self-parameterization of Meta-heuristics (MHs) in a Multi-Agent System (MAS) for resolution of scheduling problems. The learning is based on Case-based Reasoning (CBR) and two different integration approaches are proposed. A computational study is made for comparing the two CBR integration perspectives. In the end, some conclusions are reached and future work outlined.
Resumo:
In this paper we present a Self-Optimizing module, inspired on Autonomic Computing, acquiring a scheduling system with the ability to automatically select a Meta-heuristic to use in the optimization process, so as its parameterization. Case-based Reasoning was used so the system may be able of learning from the acquired experience, in the resolution of similar problems. From the obtained results we conclude about the benefit of its use.
Resumo:
An approach for the analysis of uncertainty propagation in reliability-based design optimization of composite laminate structures is presented. Using the Uniform Design Method (UDM), a set of design points is generated over a domain centered on the mean reference values of the random variables. A methodology based on inverse optimal design of composite structures to achieve a specified reliability level is proposed, and the corresponding maximum load is outlined as a function of ply angle. Using the generated UDM design points as input/output patterns, an Artificial Neural Network (ANN) is developed based on an evolutionary learning process. Then, a Monte Carlo simulation using ANN development is performed to simulate the behavior of the critical Tsai number, structural reliability index, and their relative sensitivities as a function of the ply angle of laminates. The results are generated for uniformly distributed random variables on a domain centered on mean values. The statistical analysis of the results enables the study of the variability of the reliability index and its sensitivity relative to the ply angle. Numerical examples showing the utility of the approach for robust design of angle-ply laminates are presented.
Resumo:
Structural health monitoring has long been identified as a prominent application of Wireless Sensor Networks (WSNs), as traditional wired-based solutions present some inherent limitations such as installation/maintenance cost, scalability and visual impact. Nevertheless, there is a lack of ready-to-use and off-the-shelf WSN technologies that are able to fulfill some most demanding requirements of these applications, which can span from critical physical infrastructures (e.g. bridges, tunnels, mines, energy grid) to historical buildings or even industrial machinery and vehicles. Low-power and low-cost yet extremely sensitive and accurate accelerometer and signal acquisition hardware and stringent time synchronization of all sensors data are just examples of the requirements imposed by most of these applications. This paper presents a prototype system for health monitoring of civil engineering structures that has been jointly conceived by a team of civil, and electrical and computer engineers. It merges the benefits of standard and off-the-shelf (COTS) hardware and communication technologies with a minimum set of custom-designed signal acquisition hardware that is mandatory to fulfill all application requirements.
Resumo:
This paper proposes a novel agent-based approach to Meta-Heuristics self-configuration. Meta-heuristics are algorithms with parameters which need to be set up as efficient as possible in order to unsure its performance. A learning module for self-parameterization of Meta-heuristics (MH) in a Multi-Agent System (MAS) for resolution of scheduling problems is proposed in this work. The learning module is based on Case-based Reasoning (CBR) and two different integration approaches are proposed. A computational study is made for comparing the two CBR integration perspectives. Finally, some conclusions are reached and future work outlined.
Resumo:
BACKGROUND: Both primary and secondary gynaecological neuroendocrine (NE) tumours are uncommon, and the literature is scarce concerning their imaging features. METHODS: This article reviews the epidemiological, clinical and imaging features with pathological correlation of gynaecological NE tumours. RESULTS: The clinical features of gynaecological NE tumours are non-specific and depend on the organ of origin and on the extension and aggressiveness of the disease. The imaging approach to these tumours is similar to that for other histological types and the Revised International Federation of Gynecology and Obstetrics (FIGO) Staging System also applies to NE tumours. Neuroendocrine tumours were recently divided into two groups: poorly differentiated neuroendocrine carcinomas (NECs) and well-differentiated neuroendocrine tumours (NETs). NECs include small cell carcinoma and large cell neuroendocrine carcinoma, while NETs account for typical and atypical carcinoids. Cervical small cell carcinoma and ovarian carcinoid are the most common gynaecological NE tumours. The former typically behaves aggressively; the latter usually behaves in a benign fashion and tends to be confined to the organ. CONCLUSION: While dealing with ovarian carcinoids, extra-ovarian extension, bilaterality and multinodularity raise the suspicion of metastatic disease. NE tumours of the endometrium and other gynaecological locations are very rare. TEACHING POINTS: • Primary or secondary neurondocrine (NE) tumours of the female genital tract are rare. • Cervical small cell carcinoma and ovarian carcinoids are the most common gynaecological NE tumours. • Cervical small cell carcinomas usually behave aggressively. • Ovarian carcinoids tend to behave in a benign fashion. • The imaging approach to gynaecological NE tumours and other histological types is similar.
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores