325 resultados para carotenoid
Resumo:
Changes occurring in carotenoid pigments of prawns during different types of processing and storage has been a matter calling for a scientific solution for which knowledge of their fundamental nature is essential. A detailed account of the methods employed in isolating the individual pigments and the results achieved in their identification are presented in this paper.
Resumo:
Background
High density lipoproteins (HDL) have many cardioprotective roles; however, in subjects with type 2 diabetes (T2D) these cardioprotective properties are diminished. Conversely, increased fruit and vegetable (F&V) intake may reduce cardiovascular disease risk, although direct trial evidence of a mechanism by which this occurs in subjects with T2D is lacking. Therefore, the aim of this study was to examine if increased F&V consumption influenced the carotenoid content and enzymes associated with the antioxidant properties of HDL in subjects with T2D.
MethodsEighty obese subjects with T2D were randomised to a 1- or ≥6-portion/day F&V diet for 8-weeks. Fasting serum was collected pre- and post-intervention. HDL was subfractionated into HDL2 and HDL3 by rapid ultracentrifugation. Carotenoids were measured in serum, HDL2 and HDL3 by high performance liquid chromatography. The activity of paraoxonase-1 (PON-1) was measured in serum, HDL2 and HDL3 by a spectrophotometric assay, while the activity of lecithin cholesterol acyltransferase (LCAT) was measured in serum, HDL2 and HDL3 by a fluorometric assay.
ResultsIn the ≥6- vs. 1-portion post-intervention comparisons, carotenoids increased in serum, HDL2 and particularly HDL3, (α-carotene, p = 0.008; β-cryptoxanthin, p = 0.042; lutein, p = 0.012; lycopene, p = 0.016), as did the activities of PON-1 and LCAT in HDL3 (p = 0.006 and 0.044, respectively).
ConclusionTo our knowledge, this is the first study in subjects with T2D to demonstrate that increased F&V intake augmented the carotenoid content and influenced enzymes associated with the antioxidant properties of HDL. We suggest that these changes would enhance the cardioprotective properties of this lipoprotein.
Resumo:
PURPOSE: The aim of this study was to determine whether combining potential biomarkers of fruit and vegetables is better at predicting FV intake within FV intervention studies than single biomarkers.
DESIGN: Data from a tightly controlled randomised FV intervention study (BIOFAV; all food provided and two meals/day on weekdays consumed under supervision) were used. A total of 30 participants were randomised to either 2, 5 or 8 portions FV/day for 4 weeks, and blood samples were collected at baseline and 4 weeks for plasma vitamin C and serum carotenoid analysis. The combined biomarker approach was also tested in three further FV intervention studies conducted by the same research team, with less strict dietary control (FV provided and no supervised meals).
RESULTS: The combined model containing all carotenoids and vitamin C was a better fit than either the vitamin C only (P < 0.001) model or the lutein only (P = 0.006) model in the BIOFAV study. The C-statistic was slightly lower in the lutein only model (0.85) and in the model based upon factor analysis (0.88), and much lower in the vitamin C model (0.68) compared with the full model (0.95). Results for the other studies were similar, although the differences between the models were less marked.
CONCLUSIONS: Although there was some variation between studies, which may relate to the level of dietary control or participant characteristics, a combined biomarker approach to assess overall FV consumption may more accurately predict FV intake within intervention studies than the use of a single biomarker. The generalisability of these findings to other populations and study designs remains to be tested.
Resumo:
This study was aimed at determining whether an increase of 5 portions of fruits and vegetables in the form of soups and beverages has a beneficial effect on markers of oxidative stress and cardiovascular disease risk factors. The study was a single blind, randomized, controlled, crossover dietary intervention study. After a 2-wk run-in period with fish oil supplementation, which continued throughout the dietary intervention to increase oxidative stress, the volunteers consumed carotenoid-rich or control vegetable soups and beverages for 4 wk. After a 10-wk wash-out period, the volunteers repeated the above protocol, consuming the other intervention foods. Both test and control interventions significantly increased the % energy from carbohydrates and decreased dietary protein and vitamin B-12 intakes. Compared with the control treatment, consumption of the carotenoid-rich soups and beverages increased dietary carotenoids, vitamin C, alpha-tocopherol, potassium, and folate, and the plasma concentrations of alpha-carotene (362%), beta-carotene (250%) and lycopene (31%) (P < 0.01) and decreased the plasma homocysteine concentration by 8.8% (P < 0.01). The reduction in plasma homocysteine correlated weakly with the increase in dietary folate during the test intervention (r = -0.35, P = 0.04). The plasma antioxidant status and markers of oxidative stress were not affected by treatment. Consumption of fruit and vegetable soups and beverages makes a useful contribution to meeting dietary recommendations for fruit and vegetable consumption.
Resumo:
Objective: To determine whether dietary supplementation with a natural carotenoid mixture counteracts the enhancement of oxidative stress induced by consumption of fish oil. Design: A randomised double-blind crossover dietary intervention. Setting: Hugh Sinclair Unit of Human Nutrition, School of Food Biosciences, The University of Reading, Whiteknights PO Box 226, Reading RG6 6AP, UK. Subjects and intervention: A total of 32 free-living healthy nonsmoking volunteers were recruited by posters and e-mails in The University of Reading. One volunteer withdrew during the study. The volunteers consumed a daily supplement comprising capsules containing fish oil (4 x 1 g) or fish oil (4 x 1 g) containing a natural carotenoid mixture (4 x 7.6 mg) for 3 weeks in a randomised crossover design separated by a 12 week washout phase. The carotenoid mixture provided a daily intake of beta-carotene (6.0 mg), alpha-carotene (1.4 mg), lycopene (4.5 mg), bixin (11.7 mg), lutein (4.4 mg) and paprika carotenoids (2.2 mg). Blood and urine samples were collected on days 0 and 21 of each dietary period. Results: The carotenoid mixture reduced the fall in ex vivo oxidative stability of low-density lipoprotein (LDL) induced by the fish oil (P = 0.045) and it reduced the extent of DNA damage assessed by the concentration of 8-hydroxy-2'-deoxyguanosine in urine (P = 0.005). There was no effect on the oxidative stability of plasma ex vivo assessed by the oxygen radical absorbance capacity test. beta- Carotene, alpha-carotene, lycopene and lutein were increased in the plasma of subjects consuming the carotenoid mixture. Plasma triglyceride levels were reduced significantly more than the reduction for the fish oil control (P = 0.035), but total cholesterol, HDL and LDL levels were not significantly changed by the consumption of the carotenoid mixture. Conclusions: Consumption of the natural carotenoid mixture lowered the increase in oxidative stress induced by the fish oil as assessed by ex vivo oxidative stability of LDL and DNA degradation product in urine. The carotenoid mixture also enhanced the plasma triglyceride-lowering effect of the fish oil.