985 resultados para cardio-respiratory failure
Resumo:
OBJECTIVE: To evaluate the feasibility and effects of non-invasive pressure support ventilation (NIV) on the breathing pattern in infants developing respiratory failure after extubation. DESIGN: Prospective pilot clinical study; each patient served as their own control. SETTING: A nine-bed paediatric intensive care unit of a tertiary university hospital. PATIENTS: Six patients (median age 5 months, range 0.5-7 months; median weight 4.2 kg, range 3.8-5.1 kg) who developed respiratory failure after extubation. INTERVENTIONS: After a period of spontaneous breathing (SB), children who developed respiratory failure were treated with NIV. MEASUREMENTS AND RESULTS: Measurements included clinical dyspnoea score (DS), blood gases and oesophageal pressure recordings, which were analysed for respiratory rate (RR), oesophageal inspiratory pressure swing (dPes) and oesophageal pressure-time product (PTPes). All data were collected during both periods (SB and NIV). When comparing NIV with SB, DS was reduced by 44% (P < 0.001), RR by 32% (P < 0.001), dPes by 45% (P < 0.01) and PTPes by 57% (P < 0.001). A non-significant trend for decrease in PaCO(2) was observed. CONCLUSION: In these infants, non-invasive pressure support ventilation with turbine flow generator induced a reduction of breathing frequency, dPes and PTPes, indicating reduced load of the inspiratory muscles. NIV can be used with some benefits in infants with respiratory failure after extubation.
Resumo:
The antibiotic minocycline, which is used in the treatment of acne, has been associated with various pulmonary complications such as pulmonary lupus and hypersensitivity pneumonitis. We now report a particularly severe case of minocycline-related pulmonary toxicity that was characterized by a relapsing form of hypersensitivity eosinophilic pneumonia complicated by acute respiratory failure.
Resumo:
Numerous acute and chronic neuromuscular disorders may induce an acute ventilatory failure. The latter is sometimes triggered by a complication like a bronchial aspiration, a pneumonia, or an atelectasis. The acute ventilatory failure often develops insidiously and may be missed until the terminal event. Four different clinical presentations are depicted in this review: slowly progressive (Duchenne muscular dystrophy), rapidly progressive (Guillain-Barré syndrome), chronic with exacerbations (myasthenia gravis), and a form consecutive to critical care (critical care polyneuropathy and myopathy). For each type of ventilatory failure, the review discusses the preventive surveillance, the treatment of acute respiratory failure, and the long-term management.
Resumo:
AbstractMyotonic dystrophy type 1 (DM1), also known as Steinert's disease, is an inherited autosomal dominant disease. DM1 is characterized by myotonia, muscular weakness and atrophy, but it has a multisystemic phenotype. The genetic basis of the disease is the abnormal expansion of CTG repeats in the 3' untranslated region of the DM protein kinase (DMPK) gene on chromosome 19. The size of the expansion correlates to the severity of the disease and the age of onset.Respiratory problems have long been recognized to be a major feature of the disease and are the main factor contributing to mortality ; however the mechanisms are only partly known. The aim of our study is to investigate whether respiratory failure results only from the involvement of the dystrophic process at the level of the respiratory muscles or comes also from abnormalities in the neuronal network that generates and controls the respiratory rhythm. The generation of valid transgenic mice displaying the human DM1 phenotype by the group of Dr. Gourdon provided us a useful tool to analyze the brain stem respiratory neurons, spinal phrenic motoneurons and phrenic nerves. We examined therefore these structures in transgenic mice carrying 350-500 CTGs and displaying a mild form of the disease (DM1 mice). The morphological and morphometric analysis of diaphragm muscle sections revealed a denervation of the end-plates (EPs), characterized by a decrease in size and shape complexity of EPs and a reduction in the density of acetylcholine receptors (AChRs). Also a strong and significant reduction in the number of phrenic unmyelinated fibers was detected, but not in the myelinated fibers. In addition, no pathological changes were detected in the cervical motoneurons and medullary respiratory centers (Panaite et al., 2008). These results suggest that the breathing rhythm is probably not affected in mice expressing a mild form of DM1, but rather the transmission of action potentials at the level of diaphragm NMJs is deficient.Because size of the mutation increases over generations, new transgenic mice were obtained from the mice with 350-500 CTGs, resulting from a large increase of CTG repeat in successive generations, these mice carry more than 1300 CTGs (DMSXL) and display a severe DM1 phenotype (Gomes-Pereira et al., 2007). Before we study the mechanism underlying the respiratory failure in DMSXL mice, we analyzed the peripheral nervous system (PNS) in these mice by electrophysiological, histological and morphometric methods. Our results provide strong evidence that DMSXL mice have motor neuropathy (Panaite et al., 2010, submitted). Therefore the DMSXL mice expressing severe DM1 features represent for us a good tool to investigate, in the future, the physiological, structural and molecular alterations underlying respiratory failure in DM1. Understanding the mechanism of respiratory deficiency will help to better target the therapy of these problems in DM1 patients. In addition our results may, in the future, orientate pharmaceutical and clinical research towards possible development of therapy against respiratory deficits associated with the DM1.RésuméLa dystrophic myotonique type 1 (DM1), aussi dénommée maladie de Steinert, est une maladie héréditaire autosomique dominante. Elle est caractérisée par une myotonie, une faiblesse musculaire avec atrophie et se manifeste aussi par un phénotype multisystémique. La base génétique de la maladie est une expansion anormale de répétitions CTG dans une région non traduite en 3' du gène de la DM protéine kinase (DMPK) sur le chromosome 19. La taille de l'expansion est corrélée avec la sévérité et l'âge d'apparition de DM1.Bien que les problèmes respiratoires soient reconnus depuis longtemps comme une complication de la maladie et soient le principal facteur contribuant à la mortalité, les mécanismes en sont partiellement connus. Le but de notre étude est d'examiner si l'insuffisance respiratoire de la DM1 est dû au processus dystrophique au niveau des muscles respiratoires ou si elle est entraînée aussi par des anomalies dans le réseau neuronal qui génère et contrôle le rythme respiratoire. La production par le groupe du Dr. Gourdon de souris transgéniques de DM1, manifestant le phénotype de DM1 humaine, nous a fourni un outil pour analyser les nerfs phréniques, les neurones des centres respiratoires du tronc cérébral et les motoneurones phréniques. Par conséquence, nous avons examiné ces structures chez des souris transgéniques portant 350-500 CTG et affichant une forme légère de la maladie (souris DM1). L'analyse morphologique et morphométrique des sections du diaphragme a révélé une dénervation des plaques motrices et une diminution de la taille et de la complexité de la membrane postsynaptîque, ainsi qu'une réduction de la densité des récepteurs à l'acétylcholine. Nous avons aussi détecté une réduction significative du nombre de fibres nerveuses non myélinisées mais pas des fibres myélinisées. Par ailleurs, aucun changement pathologique n'a été détecté pour les neurones moteurs médullaires cervicaux et centres respiratoires du tronc cérébral (Panaite et al., 2008). Ces résultats suggèrent que le iythme respiratoire n'est probablement pas affecté chez les souris manifestant une forme légère du DM1, mais plutôt que la transmission des potentiels d'action au niveau des plaques motrices du diaphragme est déficiente.Comme la taille du mutation augmente au fil des générations, de nouvelles souris transgéniques ont été générés par le groupe Gourdon; ces souris ont plus de 1300 CTG (DMSXL) et manifestent un phénotype sévère du DM1 (Gomes-Pereira et al., 2007). Avant d'étudier le mécanisme sous-jacent de l'insuffisance respiratoire chez les souris DMSXL, nous avons analysé le système nerveux périphérique chez ces souris par des méthodes électrophysiologiques, histologiques et morphométriques. Nos résultats fournissent des preuves solides que les souris DMSXL manifestent une neuropathie motrice (Panaite et al., 2010, soumis). Par conséquent, les souris DMSXL représentent pour nous un bon outil pour étudier, à l'avenir, les modifications physiologiques, morphologiques et moléculaires qui sous-tendent l'insuffisance respiratoire du DM1. La connaissance du mécanisme de déficience respiratoire en DM1 aidera à mieux cibler le traitement de ces problèmes aux patients. De plus, nos résultats pourront, à l'avenir, orienter la recherche pharmaceutique et clinique vers le développement de thérapie contre le déficit respiratoire associé à DM1.
Resumo:
Myotonic dystrophy (DM1) is a multisystemic disease caused by an expansion of CTG repeats in the region of DMPK, the gene encoding DM protein kinase. The severity of muscle disability in DM1 correlates with the size of CTG expansion. As respiratory failure is one of the main causes of death in DM1, we investigated the correlation between respiratory impairment and size of the (CTG)n repeat in DM1 animal models. Using pressure plethysmography the respiratory function was assessed in control and transgenic mice carrying either 600 (DM600) or >1300 CTG repeats (DMSXL). The statistical analysis of respiratory parameters revealed that both DM1 transgenic mice sub-lines show respiratory impairment compared to control mice. In addition, there is no significant difference in breathing functions between the DM600 and DMSXL mice. In conclusion, these results indicate that respiratory impairment is present in both transgenic mice sub-lines, but the severity of respiratory failure is not related to the size of the (CTG)n expansion.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study examined the location and distribution of O-2 chemoreceptors involved in cardio-respiratory responses to hypoxia in the neotropical teleost, the pacu (Piaractus mesopotamicus). Intact fish and fish experiencing progressive gill denervation by selective transection of cranial nerves IX and X were exposed to gradual hypoxia and submitted to intrabuccal and intravenous injections of NaCN while their heart rate, ventilation rate and ventilation amplitude were measured. The chemoreceptors producing reflex bradycardia were confined to, but distributed along all gill arches, and were sensitive to O-2 levels in the water and the blood. Ventilatory responses to all stimuli, though modified, continued following gill denervation, however, indicating the presence of internally and externally oriented receptors along all gill arches and either in the pseudobranch or at extra-branchial sites. Chemoreceptors located on the first pair of gill arches and innervated by the glossopharyngeal nerve appeared to attenuate the cardiac and respiratory responses to hypoxia. The data indicate that the location and distribution of cardio-respiratory O-2 receptors are not identical to those in tambaqui (Colossoma macropomum) despite their similar habitats and close phylogenetic lineage, although the differences between the two species could reduce to nothing more than the presence or absence of the pseudobranch.
Resumo:
Background and Objectives. A combination of epidural and general anesthesia has been widely used to attenuate the surgical stress response and to provide postoperative analgesia. This case report illustrates the use of this anesthetic technique. Analgesia was induced with local anesthetic in the immediate postoperative period using unintentional 19.1% potassium chloride (KCI) as diluent. Methods. An ASA I male patient was scheduled for surgical correction of idiopathic megaesophagus under continuous epidural anesthesia combined with general anesthesia. In the postoperative period, while preparing 10 mt 0.125% bupivacaine to be administered through the epidural catheter for pain control, 5 mt 19.1% KCI was unintentionally used as diluent, resulting in a 9.55% potassium solution concentration. Results. The patient developed warmness of the lower limbs, tachycardia, hypertension, intense pruritus on the chest, agitation, exacerbation of sensory and motor blocks, and respiratory failure secondary to pulmonary edema, requiring ventilatory support. Total recovery was observed after 24 hours. Conclusions. Epidurally injected potassium leads to severe clinical manifestations caused by autonomic dysfunction, spinal cord irritation, and possible release of histamine. Despite continuous recommendations, ampule misidentification still happens in hospitals, frequently leading to serious accidents.
Resumo:
Objectives: The effectiveness of noninvasive positive-pressure ventilation in preventing reintubation due to respiratory failure in children remains uncertain. A pilot study was designed to evaluate the frequency of extubation failure, develop a randomization approach, and analyze the feasibility of a powered randomized trial to compare noninvasive positive-pressure ventilation and standard oxygen therapy post extubation for preventing reintubation within 48 hours in children with respiratory failure.Design: Prospective pilot study.Setting: PICU at a university-affiliated hospital.Patients: Children aged between 28 days and 3 years undergoing invasive mechanical ventilation for greater than or equal to 48 hours with respiratory failure after programmed extubation.Interventions: Patients were prospectively enrolled and randomly assigned into noninvasive positive-pressure ventilation group and inhaled oxygen group after programmed extubation from May 2012 to May 2013.Measurements and Main Results: Length of stay in PICU and hospital, oxygenation index, blood gas before and after tracheal extubation, failure and reason for tracheal extubation, complications, mechanical ventilation variables before tracheal extubation, arterial blood gas, and respiratory and heart rates before and 1 hour after tracheal extubation were analyzed. One hundred eight patients were included (noninvasive positive-pressure ventilation group, n = 55 and inhaled oxygen group, n = 53), with 66 exclusions. Groups did not significantly differ for gender, age, disease severity, Pediatric Risk of Mortality at admission, tracheal intubation, and mechanical ventilation indications. There was no statistically significant difference in reintubation rate (noninvasive positive-pressure ventilation group, 9.1%; inhaled oxygen group, 11.3%; p > 0.05) and length of stay (days) in PICU (noninvasive positive-pressure ventilation group, 3 [116]; inhaled oxygen group, 2 [1-25]; p > 0.05) or hospital (noninvasive positive-pressure ventilation group, 19 [7-141]; inhaled oxygen group, 17 [8-80]).Conclusions: The study indicates that a larger randomized trial comparing noninvasive positive-pressure ventilation and standard oxygen therapy in children with respiratory failure is feasible, providing a basis for a future trial in this setting. No differences were seen between groups. The number of excluded patients was high.
Resumo:
BACKGROUND: Acquired immunodeficiency syndrome (AIDS) is a pandemic disease commonly associated with respiratory infections, hypoxemia, and death. Noninvasive PEEP has been shown to improve hypoxemia. In this study, we evaluated the physiologic effects of different levels of noninvasive PEEP in hypoxemic AIDS patients. METHODS: Thirty AIDS patients with acute hypoxemic respiratory failure received a randomized sequence of noninvasive PEEP (5, 10, or 15 cm H2O) for 20 min. PEEP was provided through a facial mask with pressure-support ventilation (PSV) of 5 cm H2O and an F-IO2, of 1. Patients were allowed to breathe spontaneously for a 20-min washout period in between each PEEP trial. Arterial blood gases and clinical variables were recorded after each PEEP treatment. RESULTS: The results indicate that oxygenation improves linearly with increasing levels of PEEP. However, oxygenation levels were similar regardless of the first PEEP level administered (5, 10, or 15 cm H2O), and only the subgroup that received an initial treatment of the lowest level of PEEP (ie, 5 cm H2O) showed further improvements in oxygenation when higher PEEP levels were subsequently applied. The P-aCO2, also increased in response to PEEP elevation, especially with the highest level of PEEP (ie, 15 cm H2O). PSV of 5 cm H2O use was associated with significant and consistent improvements in the subjective sensations of dyspnea and respiratory rate reported by patients treated with any level of PEEP (from 0 to 15 cm H2O). CONCLUSIONS: AIDS patients with hypoxemic respiratory failure improve oxygenation in response to a progressive sequential elevation of PEEP (up to 15 cm H2O). However, corresponding elevations in P-aCO2, limit the recommended level of PEEP to 10 cm H2O. At a level of 5 cm H2O, PSV promotes an improvement in the subjective sensation of dyspnea regardless of the PEEP level employed.
Resumo:
OBJECTIVES: Acute respiratory failure is present in 5% of patients with acute myocardial infarction and is responsible for 20% to 30% of the fatal post-acute myocardial infarction. The role of inflammation associated with pulmonary edema as a cause of acute respiratory failure post-acute myocardial infarction remains to be determined. We aimed to describe the demographics, etiologic data and histological pulmonary findings obtained through autopsies of patients who died during the period from 1990 to 2008 due to acute respiratory failure with no diagnosis of acute myocardial infarction during life. METHODS: This study considers 4,223 autopsies of patients who died of acute respiratory failure that was not preceded by any particular diagnosis while they were alive. The diagnosis of acute myocardial infarction was given in 218 (4.63%) patients. The age, sex and major associated diseases were recorded for each patient. Pulmonary histopathology was categorized as follows: diffuse alveolar damage, pulmonary edema, alveolar hemorrhage and lymphoplasmacytic interstitial pneumonia. The odds ratio of acute myocardial infarction associated with specific histopathology was determined by logistic regression. RESULTS: In total, 147 men were included in the study. The mean age at the time of death was 64 years. Pulmonary histopathology revealed pulmonary edema as well as the presence of diffuse alveolar damage in 72.9% of patients. Bacterial bronchopneumonia was present in 11.9% of patients, systemic arterial hypertension in 10.1% and dilated cardiomyopathy in 6.9%. A multivariate analysis demonstrated a significant positive association between acute myocardial infarction with diffuse alveolar damage and pulmonary edema. CONCLUSIONS: For the first time, we demonstrated that in autopsies of patients with acute respiratory failure as the cause of death, 5% were diagnosed with acute myocardial infarction. Pulmonary histology revealed a significant inflammatory response, which has not previously been reported.
Resumo:
Abstract Introduction Noninvasive ventilation (NIV), as a weaning-facilitating strategy in predominantly chronic obstructive pulmonary disease (COPD) mechanically ventilated patients, is associated with reduced ventilator-associated pneumonia, total duration of mechanical ventilation, length of intensive care unit (ICU) and hospital stay, and mortality. However, this benefit after planned extubation in patients with acute respiratory failure of various etiologies remains to be elucidated. The aim of this study was to determine the efficacy of NIV applied immediately after planned extubation in contrast to oxygen mask (OM) in patients with acute respiratory failure (ARF). Methods A randomized, prospective, controlled, unblinded clinical study in a single center of a 24-bed adult general ICU in a university hospital was carried out in a 12-month period. Included patients met extubation criteria with at least 72 hours of mechanical ventilation due to acute respiratory failure, after following the ICU weaning protocol. Patients were randomized immediately before elective extubation, being randomly allocated to one of the study groups: NIV or OM. We compared both groups regarding gas exchange 15 minutes, 2 hours, and 24 hours after extubation, reintubation rate after 48 hours, duration of mechanical ventilation, ICU length of stay, and hospital mortality. Results Forty patients were randomized to receive NIV (20 patients) or OM (20 patients) after the following extubation criteria were met: pressure support (PSV) of 7 cm H2O, positive end-expiratory pressure (PEEP) of 5 cm H2O, oxygen inspiratory fraction (FiO2) ≤ 40%, arterial oxygen saturation (SaO2) ≥ 90%, and ratio of respiratory rate and tidal volume in liters (f/TV) < 105. Comparing the 20 patients (NIV) with the 18 patients (OM) that finished the study 48 hours after extubation, the rate of reintubation in NIV group was 5% and 39% in OM group (P = 0.016). Relative risk for reintubation was 0.13 (CI = 0.017 to 0.946). Absolute risk reduction for reintubation showed a decrease of 33.9%, and analysis of the number needed to treat was three. No difference was found in the length of ICU stay (P = 0.681). Hospital mortality was zero in NIV group and 22.2% in OM group (P = 0.041). Conclusions In this study population, NIV prevented 48 hours reintubation if applied immediately after elective extubation in patients with more than 3 days of ARF when compared with the OM group. Trial Registration number ISRCTN: 41524441.
Resumo:
OBJECTIVES: Acute respiratory failure is present in 5% of patients with acute myocardial infarction and is responsible for 20% to 30% of the fatal post-acute myocardial infarction. The role of inflammation associated with pulmonary edema as a cause of acute respiratory failure post-acute myocardial infarction remains to be determined. We aimed to describe the demographics, etiologic data and histological pulmonary findings obtained through autopsies of patients who died during the period from 1990 to 2008 due to acute respiratory failure with no diagnosis of acute myocardial infarction during life. METHODS: This study considers 4,223 autopsies of patients who died of acute respiratory failure that was not preceded by any particular diagnosis while they were alive. The diagnosis of acute myocardial infarction was given in 218 (4.63%) patients. The age, sex and major associated diseases were recorded for each patient. Pulmonary histopathology was categorized as follows: diffuse alveolar damage, pulmonary edema, alveolar hemorrhage and lymphoplasmacytic interstitial pneumonia. The odds ratio of acute myocardial infarction associated with specific histopathology was determined by logistic regression. RESULTS: In total, 147 men were included in the study. The mean age at the time of death was 64 years. Pulmonary histopathology revealed pulmonary edema as well as the presence of diffuse alveolar damage in 72.9% of patients. Bacterial bronchopneumonia was present in 11.9% of patients, systemic arterial hypertension in 10.1% and dilated cardiomyopathy in 6.9%. A multivariate analysis demonstrated a significant positive association between acute myocardial infarction with diffuse alveolar damage and pulmonary edema. CONCLUSIONS: For the first time, we demonstrated that in autopsies of patients with acute respiratory failure as the cause of death, 5% were diagnosed with acute myocardial infarction. Pulmonary histology revealed a significant inflammatory response, which has not previously been reported.