989 resultados para cardiac conditions
Resumo:
Acute myocardial dysfunction is a typical manifestation of septic shock. Experimentally, the administration of endotoxin [lipopolysacharride (LPS)] to laboratory animals is frequently used to study such dysfunction. However, a majority of studies used load-dependent indexes of cardiac function [including ejection fraction (EF) and maximal systolic pressure increment (dP/dt(max))], which do not directly explore cardiac inotropism. Therefore, we evaluated the direct effects of LPS on myocardial contractility, using left ventricular (LV) pressure-volume catheters in mice. Male BALB/c mice received an intraperitoneal injection of E. coli LPS (1, 5, 10, or 20 mg/kg). After 2, 6, or 20 h, cardiac function was analyzed in anesthetized, mechanically ventilated mice. All doses of LPS induced a significant drop in LV stroke volume and a trend toward reduced cardiac output after 6 h. Concomitantly, there was a significant decrease of LV preload (LV end-diastolic volume), with no apparent change in LV afterload (evaluated by effective arterial elastance and systemic vascular resistance). Load-dependent indexes of LV function were markedly reduced at 6 h, including EF, stroke work, and dP/dt(max). In contrast, there was no reduction of load-independent indexes of LV contractility, including end-systolic elastance (ejection phase measure of contractility) and the ratio dP/dt(max)/end-diastolic volume (isovolumic phase measure of contractility), the latter showing instead a significant increase after 6 h. All changes were transient, returning to baseline values after 20 h. Therefore, the alterations of cardiac function induced by LPS are entirely due to altered loading conditions, but not to reduced contractility, which may instead be slightly increased.
Resumo:
The cardiomyocyte is a complex biological system where many mechanisms interact non-linearly to regulate the coupling between electrical excitation and mechanical contraction. For this reason, the development of mathematical models is fundamental in the field of cardiac electrophysiology, where the use of computational tools has become complementary to the classical experimentation. My doctoral research has been focusing on the development of such models for investigating the regulation of ventricular excitation-contraction coupling at the single cell level. In particular, the following researches are presented in this thesis: 1) Study of the unexpected deleterious effect of a Na channel blocker on a long QT syndrome type 3 patient. Experimental results were used to tune a Na current model that recapitulates the effect of the mutation and the treatment, in order to investigate how these influence the human action potential. Our research suggested that the analysis of the clinical phenotype is not sufficient for recommending drugs to patients carrying mutations with undefined electrophysiological properties. 2) Development of a model of L-type Ca channel inactivation in rabbit myocytes to faithfully reproduce the relative roles of voltage- and Ca-dependent inactivation. The model was applied to the analysis of Ca current inactivation kinetics during normal and abnormal repolarization, and predicts arrhythmogenic activity when inhibiting Ca-dependent inactivation, which is the predominant mechanism in physiological conditions. 3) Analysis of the arrhythmogenic consequences of the crosstalk between β-adrenergic and Ca-calmodulin dependent protein kinase signaling pathways. The descriptions of the two regulatory mechanisms, both enhanced in heart failure, were integrated into a novel murine action potential model to investigate how they concur to the development of cardiac arrhythmias. These studies show how mathematical modeling is suitable to provide new insights into the mechanisms underlying cardiac excitation-contraction coupling and arrhythmogenesis.
Resumo:
Background: Cell therapy approaches for biologic cardiac repair hold great promises, although basic fundamental issues remain poorly understood. In the present study we examined the effects of timing and routes of administration of bone marrow cells (BMC) post-myocardial infarction (MI) and the efficacy of an injectable biopolymer scaffold to improve cardiac cell retention and function. Methodology/Principal Findings: (99m)Tc-labeled BMC (6x10(6) cells) were injected by 4 different routes in adult rats: intravenous (IV), left ventricular cavity (LV), left ventricular cavity with temporal aorta occlusion (LV(+)) to mimic coronary injection, and intramyocardial (IM). The injections were performed 1, 2, 3, or 7 days post-MI and cell retention was estimated by gamma-emission counting of the organs excised 24 hs after cell injection. IM injection improved cell retention and attenuated cardiac dysfunction, whereas IV, LV or LV* routes were somewhat inefficient (< 1%). Cardiac BMC retention was not influenced by timing except for the IM injection that showed greater cell retention at 7 (16%) vs. 1, 2 or 3 (average of 7%) days post-MI. Cardiac cell retention was further improved by an injectable fibrin scaffold at day 3 post-MI (17 vs. 7%), even though morphometric and function parameters evaluated 4 weeks later displayed similar improvements. Conclusions/Significance: These results show that cells injected post-MI display comparable tissue distribution profile regardless of the route of injection and that there is no time effect for cardiac cell accumulation for injections performed 1 to 3 days post-MI. As expected the IM injection is the most efficient for cardiac cell retention, it can be further improved by co-injection with a fibrin scaffold and it significantly attenuates cardiac dysfunction evaluated 4 weeks post myocardial infarction. These pharmacokinetic data obtained under similar experimental conditions are essential for further development of these novel approaches.
Resumo:
Background: Changes in the proteoglycans glypican and syndecan-4 have been reported in several pathological conditions, but little is known about their expression in the heart during diabetes. The aim of this study was to investigate in vivo heart function changes and alterations in mRNA expression and protein levels of glypican-1 and syndecan-4 in cardiac and skeletal muscles during streptozotocin (STZ)-induced diabetes. Methods: Diabetes was induced in male Wistar rats by STZ administration. The rats were assigned to one of the following groups: control (sham injection), after 24 hours, 10 days, or 30 days of STZ administration. Echocardiography was performed in the control and STZ 10-day groups. Western and Northern blots were used to quantify protein and mRNA levels in all groups. Immunohistochemistry was performed in the control and 30-day groups to correlate the observed mRNA changes to the protein expression. Results: In vivo cardiac functional analysis performed using echocardiography in the 10-day group showed diastolic dysfunction with alterations in the peak velocity of early (E) diastolic filling and isovolumic relaxation time (IVRT) indices. These functional alterations observed in the STZ 10-day group correlated with the concomitant increase in syndecan-4 and glypican-1 protein expression. Cardiac glypican-1 mRNA and skeletal syndecan-4 mRNA and protein levels increased in the STZ 30-day group. On the other hand, the amount of glypican in skeletal muscle was lower than that in the control group. The same results were obtained from immunohistochemistry analysis. Conclusion: Our data suggest that membrane proteoglycans participate in the sequence of events triggered by diabetes and inflicted on cardiac and skeletal muscles.
Resumo:
1. Classical L-type voltage-operated calcium channel (VOCC) antagonists dilate blood vessels, depress myocardial contractility and slow cardiac conduction. 2. We compared four L-type VOCC antagonists and a novel tetralol derivative, mibefradil, reportedly 10-fold more selective for T- (transient) over L-type VOCC in two in vitro assays of human tissue, namely isolated small arteries from the aortic vasa vasorum in a myograph and right atrial trabeculae muscle under isometric force conditions. 3. In arteries contracted with K+ (62 mmol/L), the relaxation pIC(50) values for the VOCC antagonists felodipine, nifedipine, amlodipine, verapamil and mibefradil were 8.30, 7.78, 6.64, 6.26 and 6.22, respectively. In atrial trabeculae, the pIC(50) values to inhibit the inotropic response to a submaximal concentration of isoprenaline (6 nmol/L) for felodipine, nifedipine, verapamil, amlodipine and mibefradil were 7.21, 6.95, 6.91, 5.94 and 4.61, respectively. 4. Taking the anti-log (pIC(50) vessel - pIC(50) atrium) the vascular relaxation to cardiac depression potency ratios for mibefradil, felodipine, nifedipine, amlodipine and verapamil were 41, 12, 7, 5 and 0.22, respectively. 5. We conclude that, in human tissue assays, perhaps T- over L-type VOCC selectivity confers the most favourable vascular selectivity on mibefradil. Alternatively, splice variants of L-type VOCC in the vasculature (CaV1.2b) may be more sensitive to mibefradil than the splice variants in the heart (CaV1.2a).
Resumo:
Voltage-gated sodium channels drive the initial depolarization phase of the cardiac action potential and therefore critically determine conduction of excitation through the heart. In patients, deletions or loss-of-function mutations of the cardiac sodium channel gene, SCN5A, have been associated with a wide range of arrhythmias including bradycardia (heart rate slowing), atrioventricular conduction delay, and ventricular fibrillation. The pathophysiological basis of these clinical conditions is unresolved. Here we show that disruption of the mouse cardiac sodium channel gene, Scn5a, causes intrauterine lethality in homozygotes with severe defects in ventricular morphogenesis whereas heterozygotes show normal survival. Whole-cell patch clamp analyses of isolated ventricular myocytes from adult Scn5a(+/-) mice demonstrate a approximate to50% reduction in sodium conductance. Scn5a(+/-) hearts have several defects including impaired atrioventricular conduction, delayed intramyocardial conduction, increased ventricular refractoriness, and ventricular tachycardia with characteristics of reentrant excitation. These findings reconcile reduced activity of the cardiac sodium channel leading to slowed conduction with several apparently diverse clinical phenotypes, providing a model for the detailed analysis of the pathophysiology of arrhythmias.
Resumo:
The expression and properties of ionic channels were investigated in dissociated neurons from neonatal and adult rat intracardiac ganglia. Changes in the hyperpolarization-activated and ATP-sensitive K+ conductances during postnatal development and their role in neuronal excitability were examined. The hyperpolarization-activated nonselective cation current, I-h, was observed in all neurons studied and displayed slow time-dependent rectification. An inwardly rectifying K+ current, I-K(I), was present in a population of neurons from adult but not neonatal rats and was sensitive to block by extracellular Ba2+. Using the perforated-patch recording configuration, an ATP-sensitive K+ (K-ATP) conductance was identified in greater than or equal to 50% of intracardiac neurons from adult rats. Levcromakalim evoked membrane hyperpolarization, which was inhibited by the sulphonylurea drugs. glibenclamide and tolbutamide. Exposure to hypoxic conditions also activated a membrane current similar to that induced by levcromakalim and was inhibited by glibenclamide. Changes in the complement of ion channels during postnatal development may underlie observed differences in the function of intracardiac ganglion neurons during maturation. Furthermore, activation of hyperpolarization-activated and KATP channels in mammalian intracardiac neurons may play a role in neural regulation of the mature heart and cardiac function during ischaemia-reperfusion. (C) 2002 Elsevier Science B.V All rights reserved.
Resumo:
OBJECTIVE: Assessment of incidence and behavior of mediastinitis after cardiac transplantation. METHODS: From 1985 to 1999, 214 cardiac transplantations were performed, 12 (5.6%) of the transplanted patients developed confirmed mediastinitis. Patient's ages ranged from 42 to 66 years (mean of 52.3±10.0 years) and 10 (83.3%) patients were males. Seven (58.3%) patients showed sternal stability on palpation, 4 (33.3%) patients had pleural empyema, and 2 (16.7%) patients did not show purulent secretion draining through the wound. RESULTS: Staphylococcus aureus was the infectious agent identified in the wound secretion or in the mediastinum, or both, in 8 (66.7%) patients. Staphylococcus epidermidis was identified in 2 (16.7%) patients, Enterococcus faecalis in 1 (8.3%) patient, and the cause of mediastinitis could not be determined in 1 (8.3%) patient. Surgical treatment was performed on an emergency basis, and the extension of the débridement varied with local conditions. In 2 (16.7%) patients, we chose to leave the surgical wound open and performed daily dressings with granulated sugar. Total sternal resection was performed in only 1 (8.3%) patient. Out of this series, 5 (41.7%) patients died, and the causes of death were related to the infection. Autopsy revealed persistence of mediastinitis in 1 (8.3%) patient. CONCLUSION: Promptness in diagnosing mediastinitis and precocious surgical drainage have changed the natural evolution of this disease. Nevertheless, observance of the basic precepts of prophylaxis of infection is still the best way to treat mediastinitis.
Resumo:
OBJECTIVE: To identify the left inferior pulmonary vein as an indirect marker of increased pulmonary flow in congenital heart diseases.METHODS: We carried out a prospective consecutive study on 40 patients divided into 2 groups as follows: G1 - 20 patients diagnosed with congenital heart disease and increased pulmonary flow; G2 (control group) - 20 patients who were either healthy or had congenital heart disease with decreased or normal pulmonary flow. We obtained the velocity-time integral of the left inferior pulmonary vein flow, excluding the "reverse A" wave, with pulsed Doppler echocardiography.RESULTS: In G1, 19 out of the 20 patients had well-identified dilation of the left inferior pulmonary vein. No G2 patient had dilation of the left inferior pulmonary vein. Dilation of the left inferior pulmonary vein in conditions of increased pulmonary flow had sensitivity of 95%, specificity of 100%, positive predictive value of 100%, and negative predictive value of 95% (1 false-negative case). The integral of time and velocity of the pulmonary venous flow obtained with pulsed Doppler echocardiography was greater in the G1 patients (G1=25.0±4.6 cm versus G2=14.8±2.1 cm, p=0.0001).CONCLUSION: The identification of dilation of the left inferior pulmonary vein suggests the presence of congenital heart disease with increased pulmonary flow. This may be used as an indirect sign of increased flow, mainly in malformations of difficult diagnosis, such as atrial septal defects of the venous sinus or coronary sinus type.
Resumo:
Background:Cardiovascular urgencies are frequent reasons for seeking medical care. Prompt and accurate medical diagnosis is critical to reduce the morbidity and mortality of these conditions.Objective:To evaluate the use of a pocket-size echocardiography in addition to clinical history and physical exam in a tertiary medical emergency care.Methods:One hundred adult patients without known cardiac or lung diseases who sought emergency care with cardiac complaints were included. Patients with ischemic changes in the electrocardiography or fever were excluded. A focused echocardiography with GE Vscan equipment was performed after the initial evaluation in the emergency room. Cardiac chambers dimensions, left and right ventricular systolic function, intracardiac flows with color, pericardium, and aorta were evaluated.Results:The mean age was 61 ± 17 years old. The patient complaint was chest pain in 51 patients, dyspnea in 32 patients, arrhythmia to evaluate the left ventricular function in ten patients, hypotension/dizziness in five patients and edema in one patient. In 28 patients, the focused echocardiography allowed to confirm the initial diagnosis: 19 patients with heart failure, five with acute coronary syndrome, two with pulmonary embolism and two patients with cardiac tamponade. In 17 patients, the echocardiography changed the diagnosis: ten with suspicious of heart failure, two with pulmonary embolism suspicious, two with hypotension without cause, one suspicious of acute coronary syndrome, one of cardiac tamponade and one of aortic dissection.Conclusion:The focused echocardiography with pocket-size equipment in the emergency care may allow a prompt diagnosis and, consequently, an earlier initiation of the therapy.
Resumo:
BACKGROUND: Use of cardiopulmonary bypass for emergency resuscitation is not new. In fact, John Gibbon proposed this concept for the treatment of severe pulmonary embolism in 1937. Significant progress has been made since, and two main concepts for cardiac assist based on cardiopulmonary bypass have emerged: cardiopulmonary support (CPS) and extracorporeal membrane oxygenation (ECMO). The objective of this review is to summarize the state of the art in these two technologies. METHODS: Configuration of CPS is now fairly standard. A mobile cart with relatively large wheels allowing for easy transportation carries a centrifugal pump, a back-up battery with a charger, an oxygen cylinder, and a small heating system. Percutaneous cannulation, pump-driven venous return, rapid availability, and transportability are the main characteristics of a CPS system. Cardiocirculatory arrest is a major predictor of mortality despite the use of CPS. In contrast, CPS appears to be a powerful tool for patients in cardiogenic shock before cardiocirculatory arrest, requiring some type of therapeutic procedures, especially repair of anatomically correctable problems or bridging to other mechanical circulatory support systems such as ventricular assist devices. CPS is in general not suitable for long-term applications because of the small-bore cannulas, resulting in significant pressure gradients and eventually hemolysis. RESULTS: In contrast, ECMO can be designed for longer-term circulatory support. This requires large-bore cannulas and specifically designed oxygenators. The latter are either plasma leakage resistent (true membranes) or relatively thrombo-resistant (heparin coated). Both technologies require oxygenator changeovers although the main reason for this is different (clotting for the former, plasma leakage for the latter). Likewise, the tubing within a roller pump has to be displaced and centrifugal pump heads have to be replaced over time. ECMO is certainly the first choice for a circulatory support system in the neonatal and pediatric age groups, where the other assist systems are too bulky. ECMO is also indicated for patients improving on CPS. Septic conditions are, in general, considered as contraindications for ECMO. CONCLUSIONS: Ease of availability and moderate cost of cardiopulmonary bypass-based cardiac support technologies have to be balanced against the significant immobilization of human resources, which is required to make them successful.
Resumo:
BACKGROUND: Positron emission tomography (PET) during the cold pressor test (CPT) has been used to assess endothelium-dependent coronary vasoreactivity, a surrogate marker of cardiovascular events. However, its use remains limited by cardiac PET availability. As multidetector computed tomography (MDCT) is more widely available, we aimed to develop a measurement of endothelium-dependent coronary vasoreactivity with MDCT and similar radiation burden as with PET. METHODS AND RESULTS: A study group of 18 participants without known cardiovascular risk factor (9F/9M; age 60±6 years) underwent cardiac PET with (82)Rb and unenhanced ECG-gated MDCT within 4h, each time at rest and during CPT. The relation between absolute myocardial blood flow (MBF) response to CPT by PET (ml·min(-1)·g(1)) and relative changes in MDCT-measured coronary artery surface were assessed using linear regression analysis and Spearman's correlation. MDCT and PET/CT were analyzed in all participants. Hemodynamic conditions during CPT at MDCT and PET were similar (P>0.3). Relative changes in coronary artery surface because of CPT (2.0-21.2%) correlated to changes in MBF (-0.10-0.52ml·min(-1)·g(1)) (ρ=0.68, P=0.02). Effective dose was 1.3±0.2mSv for MDCT and 3.1mSv for PET/CT. CONCLUSIONS: Assessment of endothelium-dependent coronary vasoreactivity using MDCT CPT appears feasible. Because of its wider availability, shorter examination time and similar radiation burden, MDCT could be attractive in clinical research for coronary status assessment.
Resumo:
Patients with cardiac disease can develop two types of malnutrition: cardiac cachexia, which appears in chronic congestive heart failure, and malnutrition due to the complications of cardiac surgery or any other type of surgery in patients with heart disease. Early enteral nutrition should be attempted if the oral route cannot be used. When cardiac function is severely compromised, enteral nutrition is feasible, but supplementation with parenteral nutrition is sometimes required. Sustained hyperglycemia in the first 24 hours in patients admitted for acute coronary syndrome, whether diabetic or not, is a poor prognostic factor for 30-day mortality. In critically-ill cardiac patients with stable hemodynamic failure, nutritional support of 20-25 kcal/kg/day is effective in maintaining adequate nutritional status. Protein intake should be 1.2-1.5 g/kg/day. Routine polymeric or high protein formulae should be used, according to the patient's prior nutritional status, with sodium and volume restriction according to the patient's clinical situation. The major energy source for myocytes is glutamine, through conversion to glutamate, which also protects the myocardial cell from ischemia in critical situations. Administration of 1 g/day of omega-3 (EPA+DHA) in the form of fish oil can prevent sudden death in the treatment of acute coronary syndrome and can also help to reduce hospital admission for cardiovascular events in patients with chronic heart failure.