884 resultados para cardiac arrhythmias
Resumo:
The cardiac voltage-gated Na(+) channel Na(v)1.5 generates the cardiac Na(+) current (INa). Mutations in SCN5A, the gene encoding Na(v)1.5, have been linked to many cardiac phenotypes, including the congenital and acquired long QT syndrome, Brugada syndrome, conduction slowing, sick sinus syndrome, atrial fibrillation, and dilated cardiomyopathy. The mutations in SCN5A define a sub-group of Na(v)1.5/SCN5A-related phenotypes among cardiac genetic channelopathies. Several research groups have proposed that Na(v)1.5 may be part of multi-protein complexes composed of Na(v)1.5-interacting proteins which regulate channel expression and function. The genes encoding these regulatory proteins have also been found to be mutated in patients with inherited forms of cardiac arrhythmias. The proteins that associate with Na(v)1.5 may be classified as (1) anchoring/adaptor proteins, (2) enzymes interacting with and modifying the channel, and (3) proteins modulating the biophysical properties of Na(v)1.5 upon binding. The aim of this article is to review these Na(v)1.5 partner proteins and to discuss how they may regulate the channel's biology and function. These recent investigations have revealed that the expression level, cellular localization, and activity of Na(v)1.5 are finely regulated by complex molecular and cellular mechanisms that we are only beginning to understand.
Resumo:
The paper describes the clinical and pathological characteristics of an unusual cystic congenital cardiac anomaly that caused clinical signs of congestive heart failure, respiratory distress and cardiac arrhythmias in two West Highland white terrier puppies. In both dogs a definitive diagnosis was made postmortem.
Resumo:
Sudden death (SD) is a tragic event and a world-wide health problem. Every year, near 4-5 million people experience SD. SD is defined as the death occurred in 1h after the onset of symptoms in a person without previous signs of fatality. It can be named "recovered SD" when the case received medical attention, cardiac reanimation effective defibrillation or both, surviving the fatal arrhythmia. Cardiac channelopathies are a group of diseases characterized by abnormal ion channel function due to genetic mutations in ion channel genes, providing increased susceptibility to develop cardiac arrhythmias and SD. Usually the death occurs before 40 years of age and in the autopsy the heart is normal. In this review we discuss the main cardiac channelopathies involved in sudden cardiac death along with current management of cases and family members that have experienced such tragic event.
Resumo:
The cardiac late Na (+) current is generated by a small fraction of voltage-dependent Na (+) channels that undergo a conformational change to a burst-gating mode, with repeated openings and closures during the action potential (AP) plateau. Its magnitude can be augmented by inactivation-defective mutations, myocardial ischemia, or prolonged exposure to chemical compounds leading to drug-induced (di)-long QT syndrome, and results in an increased susceptibility to cardiac arrhythmias. Using CytoPatch™ 2 automated patch-clamp equipment, we performed whole-cell recordings in HEK293 cells stably expressing human Nav1.5, and measured the late Na (+) component as average current over the last 100 ms of 300 ms depolarizing pulses to -10 mV from a holding potential of -100 mV, with a repetition frequency of 0.33 Hz. Averaged values in different steady-state experimental conditions were further corrected by the subtraction of current average during the application of tetrodotoxin (TTX) 30 μM. We show that ranolazine at 10 and 30 μM in 3 min applications reduced the late Na (+) current to 75.0 ± 2.7% (mean ± SEM, n = 17) and 58.4 ± 3.5% ( n = 18) of initial levels, respectively, while a 5 min application of veratridine 1 μM resulted in a reversible current increase to 269.1 ± 16.1% ( n = 28) of initial values. Using fluctuation analysis, we observed that ranolazine 30 μM decreased mean open probability p from 0.6 to 0.38 without modifying the number of active channels n, while veratridine 1 μM increased n 2.5-fold without changing p. In human iPSC-derived cardiomyocytes, veratridine 1 μM reversibly increased APD90 2.12 ± 0.41-fold (mean ± SEM, n = 6). This effect is attributable to inactivation removal in Nav1.5 channels, since significant inhibitory effects on hERG current were detected at higher concentrations in hERG-expressing HEK293 cells, with a 28.9 ± 6.0% inhibition (mean ± SD, n = 10) with 50 μM veratridine.
Resumo:
Long QT syndrome (LQT) is an autosomal dominant disorder that can cause sudden death from cardiac arrhythmias. We recently discovered that mutations in HERG, a K+-channel gene, cause chromosome 7-linked LQT. Heterologous expression of HERG in Xenopus oocytes revealed that HERG current was similar to a well-characterized cardiac delayed rectifier K+ current, IKr, and led to the hypothesis that mutations in HERG reduced IKr, causing prolonged myocellular action potentials. To define the mechanism of LQT, we injected oocytes with mutant HERG complementary RNAs, either singly or in combination with wild-type complementary RNA. Some mutations caused loss of function, whereas others caused dominant negative suppression of HERG function. These mutations are predicted to cause a spectrum of diminished IKr and delayed ventricular repolarization, consistent with the prolonged QT interval observed in individuals with LQT.
Resumo:
Cardiac arrhythmias are a frequent cause of death and morbidity. Conventional antiarrhythmia therapy involving oral or intravenous medication is often ineffective and complicated by drug-associated side effects. Previous studies from our laboratory have demonstrated the advantages of cardiac drug-polymer implants for enhanced efficacy for cardiac arrhythmia therapy compared with conventional administration. However, these studies were based on systems that deliver drugs at a fixed release rate. Modulation of the drug delivery rate has the advantage of regulating the amount of the drug delivered depending upon the disease state of the patient. We hypothesized that iontophoresis could be used to modulate cardiac drug delivery. In this study, we report our investigations of a cardiac drug implant in dogs that is capable of iontophoretic modulation of the administration of the antiarrhythmic agent sotalol. We used a heterogeneous cation-exchange membrane (HCM) as an electrically sensitive and highly efficient rate-limiting barrier on the cardiac-contacting surface of the implant. Thus, electric current is passed only through the HCM and not the myocardium. The iontophoretic cardiac implant demonstrated in vitro drug release rates that were responsive to current modulation. In vivo results in dogs have confirmed that iontophoresis resulted in regional coronary enhancement of sotalol levels with current-responsive increases in drug concentrations. We also observed acute current-dependent changes in ventricular effective refractory periods reflecting sotalol-induced refractoriness due to regional drug administration. In 30-day dog experiments, iontophoretic cardiac implants demonstrated robust sustained function and reproducible modulation of drug delivery kinetics.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-07
Resumo:
Objective: The incidence and cost of complications occurring in older and younger inpatients were compared. Design: Secondary analysis of hospital-recorded diagnosis and costs for multiday-stay inpatients in 68 public hospitals in two Australian states. Main outcome measures: A complication is defined as a hospital-acquired diagnosis that required additional treatment. The Australian Classification of Hospital-Acquired Diagnoses system is used to identify these complications. Results: Inpatients aged >70 years have a 10.9% complication rate, which is not substantially different from the 10.89% complication rate found in patients aged <70 years. Examination of the probability by single years, however, showed that the peak incidence associated with the neonatal period and childbirth is balanced by rates of up to 20% in patients >80 years. Examining the adult patient population (40–70 years), we found that while some common complications are not age specific (electrolyte disorders and cardiac arrhythmias), others (urinary tract and lower respiratory tract infections) are more common in the older adult inpatient. Conclusion: For inpatients aged >70 years, the risks of complications increase. The incidence of hospital-acquired diagnoses in older adults differs significantly from incidence rates found in younger cohorts. Urinary tract infection and alteration to mental state are more common in older adult inpatients. Surprisingly, these complexities do not result in additional costs when compared with costs for the same complications in younger adults. Greater awareness of these differing patterns will allow patient safety efforts for older patients to focus on complications with the highest incidence and cost.
Resumo:
Cardiac arrhythmias such as ventricular tachycardia (VT) or ventricular fibrillation (VF) are the leading cause of death in the industrialised world. There is a growing consensus that these arrhythmias arise because of the formation of spiral waves of electrical activation in cardiac tissue; unbroken spiral waves are associated with VT and broken ones with VF. Several experimental studies have been carried out to determine the effects of inhomogeneities in cardiac tissue on such arrhythmias. We give a brief overview of such experiments, and then an introduction to partial-differential-equation models for ventricular tissue. We show how different types of inhomogeneities can be included in such models, and then discuss various numerical studies, including our own, of the effects of these inhomogeneities on spiral-wave dynamics. The most remarkable qualitative conclusion of our studies is that the spiral-wave dynamics in such systems depends very sensitively on the positions of these inhomogeneities.
Resumo:
Sudden cardiac death is often caused by cardiac arrhythmias. Recently, special attention has been given to a certain arrhythmogenic condition, the long-QT syndrome, which occurs as a result of genetic mutations or drug toxicity. The underlying mechanisms of arrhythmias, caused by the long-QT syndrome, are not fully understood. However, arrhythmias are often connected to special excitations of cardiac cells, called early afterdepolarizations (EADs), which are depolarizations during the repolarizing phase of the action potential. So far, EADs have been studied mainly in isolated cardiac cells. However, the question on how EADs at the single-cell level can result in fibrillation at the tissue level, especially in human cell models, has not been widely studied yet. In this paper, we study wave patterns that result from single-cell EAD dynamics in a mathematical model for human ventricular cardiac tissue. We induce EADs by modeling experimental conditions which have been shown to evoke EADs at a single-cell level: by an increase of L-type Ca currents and a decrease of the delayed rectifier potassium currents. We show that, at the tissue level and depending on these parameters, three types of abnormal wave patterns emerge. We classify them into two types of spiral fibrillation and one type of oscillatory dynamics. Moreover, we find that the emergent wave patterns can be driven by calcium or sodium currents and we find phase waves in the oscillatory excitation regime. From our simulations we predict that arrhythmias caused by EADs can occur during normal wave propagation and do not require tissue heterogeneities. Experimental verification of our results is possible for experiments at the cell-culture level, where EADs can be induced by an increase of the L-type calcium conductance and by the application of I-Kr blockers, and the properties of the emergent patterns can be studied by optical mapping of the voltage and calcium.
Resumo:
Early afterdepolarizations (EADs), which are abnormal oscillations of the membrane potential at the plateau phase of an action potential, are implicated in the development of cardiac arrhythmias like Torsade de Pointes. We carry out extensive numerical simulations of the TP06 and ORd mathematical models for human ventricular cells with EADs. We investigate the different regimes in both these models, namely, the parameter regimes where they exhibit (1) a normal action potential (AP) with no EADs, (2) an AP with EADs, and (3) an AP with EADs that does not go back to the resting potential. We also study the dependence of EADs on the rate of at which we pace a cell, with the specific goal of elucidating EADs that are induced by slow or fast rate pacing. In our simulations in two-and three-dimensional domains, in the presence of EADs, we find the following wave types: (A) waves driven by the fast sodium current and the L-type calcium current (Na-Ca-mediated waves); (B) waves driven only by the L-type calcium current (Ca-mediated waves); (C) phase waves, which are pseudo-travelling waves. Furthermore, we compare the wave patterns of the various wave-types (Na-Ca-mediated, Ca-mediated, and phase waves) in both these models. We find that the two models produce qualitatively similar results in terms of exhibiting Na-Ca-mediated wave patterns that are more chaotic than those for the Ca-mediated and phase waves. However, there are quantitative differences in the wave patterns of each wave type. The Na-Ca-mediated waves in the ORd model show short-lived spirals but the TP06 model does not. The TP06 model supports more Ca-mediated spirals than those in the ORd model, and the TP06 model exhibits more phase-wave patterns than does the ORd model.
Resumo:
353 págs.
Resumo:
Hyperkalaemia, an elevated extracellular fluid potassium concentration, is a common electrolyte disorder and is present in 1-10% of hospitalised patients. Elevated serum potassium concentrations are usually asymptomatic but may be associated with electrocardiogram (ECG) changes. Hyperkalaemia occasionally leads to life-threatening cardiac arrhythmias. Prompt recognition of this disorder, patient risk management and administration of appropriate treatment can prevent serious cardiac complications of hyperkalaemia. Further assessment of the underlying basis for hyperkalaemia usually reveals a problem with renal potassium excretion (rather than transcellular shift of potassium or excess potassium intake). Reduced potassium excretion is typically associated with decreased potassium secretion in the aldosterone-sensitive distal nephron of the kidney. Common causes for hyperkalaemia include kidney failure, limited delivery of sodium and water to the distal nephron and drugs that inhibit the renin-angiotensin-aldosterone system. Treatment of life-threatening hyperkalaemia (particularly those patients with ECG changes) involves administration of intravenous calcium salts to stabilise the resting cardiac membrane potential. The potassium concentration can be lowered by administration of intravenous insulin combined with an infusion of glucose to stimulate intracellular uptake of potassium. Nebulised β-2 adrenoceptor agonists can augment the effects of intravenous insulin and glucose pending more definitive management of the recurrent hyperkalaemia risk. Additional management steps include stopping further potassium intake and careful review of prescribed drugs that may be adversely affecting potassium homeostasis. Changes to prescribing systems and an agreed institutional protocol for management of hyperkalaemia can improve patient safety for this frequently encountered electrolyte disorder.
Resumo:
BACKGROUND: Up to 60% of syncopal episodes remain unexplained. We report the results of a standardized, stepwise evaluation of patients referred to an ambulatory clinic for unexplained syncope. METHODS AND RESULTS: We studied 939 consecutive patients referred for unexplained syncope, who underwent a standardized evaluation, including history, physical examination, electrocardiogram, head-up tilt testing (HUTT), carotid sinus massage (CSM) and hyperventilation testing (HYV). Echocardiogram and stress test were performed when underlying heart disease was initially suspected. Electrophysiological study (EPS) and implantable loop recorder (ILR) were used only in patients with underlying structural heart disease or major unexplained syncope. We identified a cause of syncope in 66% of patients, including 27% vasovagal, 14% psychogenic, 6% arrhythmias, and 6% hypotension. Noninvasive testing identified 92% and invasive testing an additional 8% of the causes. HUTT yielded 38%, CSM 28%, HYV 49%, EPS 22%, and ILR 56% of diagnoses. On average, patients with arrhythmic causes were older, had a lower functional capacity, longer P-wave duration, and presented with fewer prodromes than patients with vasovagal or psychogenic syncope. CONCLUSIONS: A standardized stepwise evaluation emphasizing noninvasive tests yielded 2/3 of causes in patients referred to an ambulatory clinic for unexplained syncope. Neurally mediated and psychogenic mechanisms were behind >50% of episodes, while cardiac arrhythmias were uncommon. Sudden syncope, particularly in older patients with functional limitations or a prolonged P-wave, suggests an arrhythmic cause.
Resumo:
Les cardiomyopathies sont une atteinte du myocarde qui se présente sous différentes formes telles que l’hypertrophie ou la dilatation des chambres cardiaques. Ces maladies du muscle cardiaque peuvent affecter la contraction cardiaque et dégénèrer en insuffisance cardiaque. Aussi, l’hypertrophie et l’insuffisance cardiaques sont associées à une augmentation de la morbidité et de la mortalité cardiovasculaires principalement due au remodelage électrique et à la survenue d’arythmies. De plus, le retard de repolarisation, associé à une diminution des courants K+, est un des troubles cardiaques les plus couramment observés lors de ces pathologies cardiaques. L’angiotensine II (Ang II) et la norépinéphrine, principaux effecteurs du système rénine-angiotensine et du système nerveux sympathique, peuvent tous deux agir directement sur le cœur en liant les récepteurs de type 1 de l’Ang II (AT1) et les récepteurs adrénergiques. L’Ang II et la norépinéphrine sont associées au développement des cardiomyopathies, au remodelage cardiaque et à une prolongation de la durée du potentiel d'action cardiaque. Deux modèles de souris trangéniques surexprimant spécifiquement au niveau cardiaque les récepteurs AT1 (la souris AT1R) ou les récepteurs α1B-adrénergiques (la souris α1B-AR) ont été créés afin d’étudier les effets de ces stimuli sur le cœur. Ces deux modèles de souris développent du remodelage cardiaque, soit de l’hypertrophie chez les souris AT1R (cardiomyopathie hypertrophique) ou une dilatation des chambres cardiaques chez les souris α1B-AR (cardiomyopathie dilatée). Au stade avancé de la maladie, les deux modèles de souris transgéniques sont insuffisants cardiaques. Des données préliminaires ont aussi montré que les souris AT1R et les souris α1B-AR ont une incidence accrue d’arythmies ainsi qu’une prolongation de la durée du potentiel d’action. De plus, ces deux modèles de souris meurent subitement et prématurément, ce qui laissait croire qu’en conditions pathologiques, l’activation des récepteurs AT1 ou des récepteurs α1B-adrénergiques pouvait affecter la repolarisation et causer l’apparition d’arythmies graves. Ainsi, l’objectif de ce projet était de caractériser la repolarisation ventriculaire des souris AT1R et α1B-AR afin de déterminer si la suractivation chronique des récepteurs de l’Ang II ou des récepteurs 1B-adrénergiques pouvait affecter directement les paramètres électrophysiologiques et induire des arythmies. Les résultats obtenus ont révélé que les souris AT1R et les souris α1B-AR présentent un retard de repolarisation (prolongation de l’intervalle QTc (dans l’électrocardiogramme) et de la durée du potentiel d’action) causé par une diminution des courants K+ (responsables de la repolarisation). Aussi, l’incidence d’arythmies est plus importante dans les deux groupes de souris transgéniques comparativement à leur contrôle respectif. Finalement, nous avons vu que les troubles de repolarisation se produisent également dans les groupes de souris transgéniques plus jeunes, avant l’apparition de l’hypertrophie ou du remodelage cardiaque. Ces résultats suggèrent qu’en conditions pathologiques, l’activation chronique des récepteurs de l’Ang II ou des récepteurs α1B-adrénergiques peut favoriser le développement d’arythmies en retardant la repolarisation et cela, indépendamment de changements hémodynamiques ou du remodelage cardiaque. Les résultats de ces études pourront servir à comprendre les mécanismes responsables du développement d’arythmies cardiaques lors du remodelage et de l’insuffisance cardiaques et pourraient aider à optimiser le choix des traitements chez ces patients atteints ou à risque de développer de l’hypertrophie ou du remodelage cardiaque.